基于卷积神经网络的福建省区域滑坡灾害预警模型

董力豪, 刘艳辉, 黄俊宝, 刘海宁. 基于卷积神经网络的福建省区域滑坡灾害预警模型[J]. 水文地质工程地质, 2024, 51(1): 145-153. doi: 10.16030/j.cnki.issn.1000-3665.202211018
引用本文: 董力豪, 刘艳辉, 黄俊宝, 刘海宁. 基于卷积神经网络的福建省区域滑坡灾害预警模型[J]. 水文地质工程地质, 2024, 51(1): 145-153. doi: 10.16030/j.cnki.issn.1000-3665.202211018
DONG Lihao, LIU Yanhui, HUANG Junbao, LIU Haining. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 145-153. doi: 10.16030/j.cnki.issn.1000-3665.202211018
Citation: DONG Lihao, LIU Yanhui, HUANG Junbao, LIU Haining. An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 145-153. doi: 10.16030/j.cnki.issn.1000-3665.202211018

基于卷积神经网络的福建省区域滑坡灾害预警模型

  • 基金项目: 国家重点研发计划项目(2023YFC3007205;2018YFC1505503);国家自然科学基金项目(42077440;41202217)
详细信息
    作者简介: 董力豪(1998—),男,硕士研究生,主要从事地质灾害预警相关研究工作。E-mail:1365234358@qq.com
    通讯作者: 刘艳辉(1978—),女,博士,正高级工程师,主要从事地质灾害预警与防治、工程地质等方面的研究工作。E-mail:lyanhui@mail.cgs.gov.cn
  • 中图分类号: P642.22

An early prediction model of regional landslide disasters in Fujian Province based on convolutional neural network

More Information
  • 福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的一种。卷积神经网络作为一种经典的深度学习算法,具有比传统机器学习更强大的分类能力与表征能力。文章以福建省为研究区,将卷积神经网络引入滑坡灾害预警领域,构建福建省区域滑坡预警模型,过程及结果如下:(1)采用SMOTE优化算法对2010—2018年福建省滑坡灾害样本库进行优化,扩充正样本的个数,将正负样本比例从1∶3.4扩充到1∶2,样本总量达到18040个;(2)构建卷积神经网络模型结构,模型结构包括一个输入层、两个卷积层、两个最大池化层和一个全连接层以及一个输出层;(3)使用卷积神经网络对优化后的样本(2010—2018年样本的80%作为训练集)进行训练,并用贝叶斯优化算法优化模型超参数,得到福建省区域滑坡预警模型;(4)以2010—2018年样本的20%作为测试集对模型进行测试,采用混淆矩阵、ROC曲线进行模型测试,结果显示模型准确度为0.96~0.97,AUC值达到0.977,模型精度与泛化能力良好;(5)以2019年汛期滑坡灾害实况作为正样本,通过时空采样的方法采集负样本,构建2019年区域滑坡样本校验集(样本数603个),对模型进行进一步实况校验,采用混淆矩阵、ROC曲线进行模型校验,结果显示模型准确度为0.75~0.85,AUC值为0.852。虽然仅用了2019年汛期的滑坡实况样本进行校验,但也达到较好的效果。将卷积神经网络算法应用到区域滑坡预警中,为建立区域滑坡预警模型提供了一种新的途径,初步校验表明,模型效果良好,今后将在福建省对模型进行进一步的应用与校验。

  • 加载中
  • 图 1  SMOTE算法合成数据示意图

    Figure 1. 

    图 2  福建省训练样本集分布

    Figure 2. 

    图 3  典型CNN网络结构图

    Figure 3. 

    图 4  训练过程中准确率的变化

    Figure 4. 

    图 5  CNN模型ROC曲线

    Figure 5. 

    图 6  福建省2019年汛期滑坡灾害分布图

    Figure 6. 

    图 7  2019年样本CNN模型校验结果的ROC曲线

    Figure 7. 

    表 1  CNN模型超参数设置

    Table 1.  Hyperparameter settings of the CNN models

    超参数意义优化后参数
    units1
    units2
    dropout rate
    activation1
    activation2
    activation3
    lr
    第一层卷积核的大小
    第二层卷积核的大小
    每层神经元丢弃率
    第一层激活函数
    第二层激活函数
    全连接层激活函数
    学习率
    512$ \times 1 $
    32$ \times 1 $
    0.1
    relu
    relu
    elu
    0.002
    下载: 导出CSV

    表 2  不同阈值下的 CNN分类结果混淆矩阵

    Table 2.  Confuse matrix of the results of the CNN classification under different thresholds

    阈值实际值
    非滑坡滑坡
    预测值非滑坡232572特异度:0.969
    0.25滑坡731138灵敏度:0.939
    假正类率:0.969真正类率:0.941准确率:0.960
    预测值非滑坡234453特异度:0.978
    0.50滑坡781133灵敏度:0.935
    假正类率:0.967真正类率:0.955准确率:0.964
    预测值非滑坡235344特异度:0.982
    0.75滑坡861125灵敏度:0.929
    假正类率:0.964真正类率:0.962准确率:0.964
    下载: 导出CSV

    表 3  2019年样本CNN模型校验结果的混淆矩阵

    Table 3.  Confusion matrix of the 2019 sample CNN model verification results

    阈值实际值
    非滑坡滑坡
    预测值非滑坡 43476特异度:0.851
    0.25滑坡1875灵敏度:0.806
    假正类率:0.960真正类率:0.497准确率:0.844
    预测值非滑坡450120特异度:0.789
    0.50滑坡231灵敏度:0.939
    假正类率:0.996真正类率:0.205准确率:0.798
    预测值非滑坡452151特异度:0.750
    0.75滑坡00灵敏度:0
    假正类率:1真正类率:0准确率:0.750
    下载: 导出CSV

    表 4  福建省预警模型评价对比

    Table 4.  Comparison of early warning model evaluation in Fujian Province

    人工智能模型ACCAUC
    卷积神经网络0.9640.977
    随机森林(过采样)0.9450.980
    随机森林0.9530.954
      注:随机森林评价数据摘自文献[29]。
    下载: 导出CSV
  • [1]

    KAVZOGLU T,SAHIN E K,COLKESEN I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis,support vector machines,and logistic regression[J]. Landslides,2014,11(3):425 − 439. doi: 10.1007/s10346-013-0391-7

    [2]

    HUANG Lu,XIANG Luyang. Method for meteorological early warning of precipitation-induced landslides based on deep neural network[J]. Neural Processing Letters,2018,48(2):1243 − 1260. doi: 10.1007/s11063-017-9778-0

    [3]

    何永金. 福建省主要地质灾害的特点、成因及其对策[J]. 福建地质,1995,14(4):263 − 271. [HE Yongjin. Characteristics and mechanism of major geological hazards in Fujian Province and protection and controlling method against them[J]. Geology of Fujian,1995,14(4):263 − 271. (in Chinese with English abstract)

    HE Yongjin. Characteristics and mechanism of major geological hazards in Fujian Province and protection and controlling method against them[J]. Geology of Fujian, 1995, 14(4): 263-271. (in Chinese with English abstract)

    [4]

    CANNON S H, ELLEN S D. Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California[J]. California Geology. 1985, 38(12): 267–272

    [5]

    兰恒星,周成虎,王苓涓,等. 地理信息系统支持下的滑坡-水文耦合模型研究[J]. 岩石力学与工程学报,2003,22(8):1309 − 1314. [LAN Hengxing,ZHOU Chenghu,WANG Lingjuan,et al. GIS based landslide stability and hydrological distribution coupled model[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1309 − 1314. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.08.015

    LAN Hengxing, ZHOU Chenghu, WANG Lingjuan, et al. GIS based landslide stability and hydrological distribution coupled model[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(8): 1309-1314. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.08.015

    [6]

    史中发. 哀牢山地区典型降雨型滑坡稳定性研究[D]. 北京: 中国地质大学(北京), 2014

    SHI Zhongfa. Stability analysis of a rainfall-induced landslide in the area of ailao mountain[D]. Beijing: China University of Geosciences (Beijing), 2014. (in Chinese with English abstract)

    [7]

    李媛. 区域降雨型滑坡预报预警方法研究[D]. 北京: 中国地质大学(北京), 2005

    LI Yuan. Method for the warning of precipitation-induced landslides[D]. Beijing: China University of Geosciences (Beijing), 2005. (in Chinese with English abstract)

    [8]

    刘传正,李铁锋,程凌鹏,等. 区域地质灾害评价预警的递进分析理论与方法[J]. 水文地质工程地质,2004,31(4):1 − 8. [LIU Chuanzheng,LI Tiefeng,CHENG Lingpeng,et al. A method by to analyses four parameters for assessment and early warning on the regional geo-hazards[J]. Hydrogeology & Engineering Geology,2004,31(4):1 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2004.04.001

    LIU Chuanzheng, LI Tiefeng, CHENG Lingpeng, et al. A method by to analyses four parameters for assessment and early warning on the regional geo-hazards[J]. Hydrogeology & Engineering Geology, 2004, 31(4): 1-8. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2004.04.001

    [9]

    CAINE N. The rainfall intensity - duration control of shallow landslides and debris flows[J]. Geografiska Annaler:Series A,Physical Geography,1980,62(1/2):23 − 27.

    [10]

    BRAND E W, PREMCHITT J, PHILLIPSON H B. Relationship between rainfall and landslides in Hong Kong[C]//Proceedings of the 4th International Symposium on Landslides. Toronto: Canadian Geotechnical Society, 1984, 1(1): 276 − 284.

    [11]

    HONG Yong,HIURA H,SHINO K,et al. The influence of intense rainfall on the activity of large-scale crystalline schist landslides in Shikoku Island,Japan[J]. Landslides,2005,2(2):97 − 105. doi: 10.1007/s10346-004-0043-z

    [12]

    刘传正,刘艳辉,温铭生,等. 中国地质灾害气象预警实践:2003—2012[J]. 中国地质灾害与防治学报,2015,26(1):1 − 8. [LIU Chuanzheng,LIU Yanhui,WEN Mingsheng,et al. Early warning for regional geo-hazards during 2003-2012,China[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):1 − 8. (in Chinese with English abstract)

    LIU Chuanzheng, LIU Yanhui, WEN Mingsheng, et al. Early warning for regional geo-hazards during 2003-2012, China[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 1-8. (in Chinese with English abstract)

    [13]

    PENNINGTON C, DASHWOOD C, FREEBOROUGH K. The National Landslide Database and GIS for Great Britain: construction, development, data acquisition, application and communication[C]//EGU General Asse-mbly Conference Abstracts. 2014: 3638.

    [14]

    陈香,王俪儒. 福建省滑坡灾害气象预警的研究[J]. 防灾科技学院学报,2015,17(4):68 − 75. [CHEN Xiang,WANG Liru. A study on landslide hazard meteorological early warning in Fujian Province[J]. Journal of Institute of Disaster Prevention,2015,17(4):68 − 75. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-8047.2015.04.011

    CHEN Xiang, WANG Liru. A study on landslide hazard meteorological early warning in Fujian Province[J]. Journal of Institute of Disaster Prevention, 2015, 17(4): 68-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-8047.2015.04.011

    [15]

    方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201911034

    FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 181-187. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201911034

    [16]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese with English abstract)

    [17]

    Paraskevas,Tsangaratos. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments:the influence of models complexity and training dataset size[J]. CATENA,2016,145:164 − 179. doi: 10.1016/j.catena.2016.06.004

    [18]

    YOUSSEF A M,POURGHASEMI H R,POURTAGHI Z S,et al. Landslide susceptibility mapping using random forest,boosted regression tree,classification and regression tree,and general linear models and comparison of their performance at Wadi Tayyah Basin,Asir Region,Saudi Arabia[J]. Landslides,2016,13(5):839 − 856. doi: 10.1007/s10346-015-0614-1

    [19]

    CHEN Wei,XIE Xiaoshen,WANG jiale,et al. A comparative study of logistic model tree,random forest,and classification and regression tree models for spatial prediction of landslide susceptibility[J]. CATENA,2017,151:147 − 160. doi: 10.1016/j.catena.2016.11.032

    [20]

    冉光静,李晓,陈刚. 福建省滑坡发育强度分布规律及影响因素分析[J]. 西部探矿工程,2009,21(2):20 − 22. [RAN Guangjing,LI Xiao,CHEN Gang. Distribution law and influencing factors of landslide development intensity in Fujian Province[J]. West-China Exploration Engineering,2009,21(2):20 − 22. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2009.02.009

    RAN Guangjing, LI Xiao, CHEN Gang. Distribution law and influencing factors of landslide development intensity in Fujian Province[J]. West-China Exploration Engineering, 2009, 21(2): 20-22. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2009.02.009

    [21]

    刘艺梁,殷坤龙,刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质,2010,37(5):92 − 96. [LIU Yiliang,YIN Kunlong,LIU Bin. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology,2010,37(5):92 − 96. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.05.017

    LIU Yiliang, YIN Kunlong, LIU Bin. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 92-96. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.05.017

    [22]

    刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)

    LIU Fuzhen, WANG Ling, XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 98-106. (in Chinese with English abstract)

    [23]

    方然可,刘艳辉,黄志全. 基于机器学习的区域滑坡危险性评价方法综述[J]. 中国地质灾害与防治学报,2021,32(4):1 − 8. [FANG Ranke,LIU Yanhui,HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):1 − 8. (in Chinese with English abstract)

    FANG Ranke, LIU Yanhui, HUANG Zhiquan. A review of the methods of regional landslide hazard assessment based on machine learning[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(4): 1-8. (in Chinese with English abstract)

    [24]

    刘艳辉,方然可,苏永超,等. 基于机器学习的区域滑坡灾害预警模型研究[J]. 工程地质学报,2021,29(1):116 − 124. [LIU Yanhui,FANG Ranke,SU Yongchao,et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology,2021,29(1):116 − 124. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-533

    LIU Yanhui, FANG Ranke, SU Yongchao, et al. Machine learning based model for warning of regional landslide disasters[J]. Journal of Engineering Geology, 2021, 29(1): 116-124. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-533

    [25]

    王毅,方志策,牛瑞卿,等. 基于深度学习的滑坡灾害易发性分析[J]. 地球信息科学学报,2021,23(12):2244 − 2260. [WANG Yi,FANG Zhice,NIU Ruiqing,et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science,2021,23(12):2244 − 2260. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2021.210057

    WANG Yi, FANG Zhice, NIU Ruiqing, et al. Landslide susceptibility analysis based on deep learning[J]. Journal of Geo-Information Science, 2021, 23(12): 2244-2260. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2021.210057

    [26]

    王毅,方志策,牛瑞卿. 融合深度神经网络的三峡库区滑坡灾害易发性预测[J]. 资源环境与工程,2021,35(5):652 − 660. [WANG Yi,FANG Zhice,NIU Ruiqing. Prediction of landslide susceptibility in Three Gorges Reservoir area based on integrating deep neural network[J]. Resources Environment & Engineering,2021,35(5):652 − 660. (in Chinese with English abstract) doi: 10.16536/j.cnki.issn.1671-1211.2021.05.013

    WANG Yi, FANG Zhice, NIU Ruiqing. Prediction of landslide susceptibility in Three Gorges Reservoir area based on integrating deep neural network[J]. Resources Environment & Engineering, 2021, 35(5): 652-660. (in Chinese with English abstract) doi: 10.16536/j.cnki.issn.1671-1211.2021.05.013

    [27]

    WANG Yi,FANG Zhice,HONG Haoyuan. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County,China[J]. Science of the Total Environment,2019,666:975 − 993. doi: 10.1016/j.scitotenv.2019.02.263

    [28]

    林经纬. 福建省滑坡灾害特征及驱动因素分析[J]. 莆田学院学报,2015,22(5):83 − 88. [LIN Jingwei. Characteristics and driving factors of landslide hazard in Fujian Province[J]. Journal of Putian University,2015,22(5):83 − 88. (in Chinese with English abstract)

    LIN Jingwei. Characteristics and driving factors of landslide hazard in Fujian Province[J]. Journal of Putian University, 2015, 22(5): 83-88. (in Chinese with English abstract)

    [29]

    刘艳辉,黄俊宝,肖锐铧,等. 基于随机森林的福建省区域滑坡灾害预警模型研究[J]. 工程地质学报,2022,30(3):944 − 955. [LIU Yanhui,HUANG Junbao,XIAO Ruihua,et al. Study on early warning model for regional landslides based on random forest in Fujian Province[J]. Journal of Engineering Geology,2022,30(3):944 − 955. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0625

    LIU Yanhui, HUANG Junbao, XIAO Ruihua, et al. Study on early warning model for regional landslides based on random forest in Fujian Province[J]. Journal of Engineering Geology, 2022, 30(3): 944-955. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2021-0625

    [30]

    刘艳辉, 肖锐铧, 陈春利, 等. 区域滑坡预警中训练样本集的构建方法、系统及存储介质: 20201082-9816.0[P]

    LIU Yanhui, XIAO Ruihua, CHEN Chunli, et al. Construction method system and storage medium of training sample set in regional landslide early warning: 202010829816.0[P]. 2020-08-18. (in Chinese)

    [31]

    CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16:321 − 357. doi: 10.1613/jair.953

    [32]

    LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4):541 − 551.

    [33]

    GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge, Massachusetts: The MIT Press, 2016

    [34]

    SNOEK J, LAROCHELLE H, ADAMS R P. Practical Bayesian optimization of machine learning algorithms[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems-Volume 2. December 3 − 6, 2012, Lake Tahoe, Nevada. New York: ACM, 2012: 2951 − 2959.

    [35]

    SAMEEN M I,PRADHAN B,LEE S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment[J]. CATENA,2020,186:104249. doi: 10.1016/j.catena.2019.104249

    [36]

    李亭,田原,邬伦,等. 基于随机森林方法的滑坡灾害危险性区划[J]. 地理与地理信息科学,2014,30(6):25 − 30. [LI Ting,TIAN Yuan,WU Lun,et al. Landslide susceptibility mapping using random forest[J]. Geography and Geo-Information Science,2014,30(6):25 − 30. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2014.06.006

    LI Ting, TIAN Yuan, WU Lun, et al. Landslide susceptibility mapping using random forest[J]. Geography and Geo-Information Science, 2014, 30(6): 25-30. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-0504.2014.06.006

  • 加载中

(7)

(4)

计量
  • 文章访问数:  612
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2022-11-07
修回日期:  2023-03-06
录用日期:  2023-03-13
刊出日期:  2024-01-15

目录