场地污染地下水抽出处理系统井群加权优化方法研究

陈帆, 史浙明, 贾永锋, 臧永歌, 廉新颖, 姜永海, 冉泽宇, 尚长健. 场地污染地下水抽出处理系统井群加权优化方法研究[J]. 水文地质工程地质, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029
引用本文: 陈帆, 史浙明, 贾永锋, 臧永歌, 廉新颖, 姜永海, 冉泽宇, 尚长健. 场地污染地下水抽出处理系统井群加权优化方法研究[J]. 水文地质工程地质, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029
CHEN Fan, SHI Zheming, JIA Yongfeng, ZANG Yongge, LIAN Xinying, JIANG Yonghai, RAN Zeyu, SHANG Changjian. Polluted groundwater pump and treat system optimization based on weighted optimization method on the area[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029
Citation: CHEN Fan, SHI Zheming, JIA Yongfeng, ZANG Yongge, LIAN Xinying, JIANG Yonghai, RAN Zeyu, SHANG Changjian. Polluted groundwater pump and treat system optimization based on weighted optimization method on the area[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 201-214. doi: 10.16030/j.cnki.issn.1000-3665.202212029

场地污染地下水抽出处理系统井群加权优化方法研究

  • 基金项目: 国家重点研发计划项目(2019YFC1806202)
详细信息
    作者简介: 陈帆(1998—),女,硕士研究生,主要从事地下水修复与模拟方面的研究。E-mail:1366163229@qq.com
    通讯作者: 尚长健(1985—),男,博士,高级工程师,主要从事地下水污染修复技术与模拟方面的研究。E-mail:shangcj@yeah.net
  • 中图分类号: X523

Polluted groundwater pump and treat system optimization based on weighted optimization method on the area

More Information
  • 井群布设是地下水修复抽出处理技术的关键环节之一。为提高抽出处理技术的修复效率,以某污染场为研究对象,建立非线性-动态-多目标的模拟-优化模型,以污染物去除率最高、修复达标时间最短、资金成本最低为优化目标,设定单井、双井、三井模式下不同的抽出流量,采用加权优化方法对井群布设方案进行对比计算。结果表明:整体而言单井模式修复效果较差,侧重资金成本时双井模式抽出方案修复效果整体较优,侧重达标时间成本时三井模式抽出方案修复效果整体较优;单井模式恒定流量抽出修复效果较优,多井模式下后期若适当降低抽出流量,可减少总抽出量,节省资金成本,井群动态管理可提高修复效率。研究验证了加权优化方法在井群优化应用中的灵活性和实用性,可为加权优化方法结合数值模拟方法在抽出处理技术的井群布设优化中应用提供参考。

  • 加载中
  • 图 1  研究区平面图

    Figure 1. 

    图 2  研究区水文地质剖面图

    Figure 2. 

    图 3  研究区概念模型图

    Figure 3. 

    图 4  地下水流场拟合等水头图

    Figure 4. 

    图 5  地下水位实测值与模拟值拟合图

    Figure 5. 

    图 6  研究区地下水污染羽(2021年3月)和井群布设分布图

    Figure 6. 

    图 7  最优条件下抽出井数量与资金成本和达标时间的关系图

    Figure 7. 

    图 8  单井模式各方案模拟优化结果图

    Figure 8. 

    图 9  双井模式各方案模拟优化结果图

    Figure 9. 

    图 10  三井模式各方案模拟优化结果图

    Figure 10. 

    图 11  3种模式下各方案模拟优化结果图

    Figure 11. 

    图 12  侧重资金成本时各方案得分情况(情景1和情景2)

    Figure 12. 

    图 13  侧重时间成本时各方案得分情况(情景3和情景4)

    Figure 13. 

    表 1  单井模式下不同井位的模拟结果

    Table 1.  Simulation results of different well locations in the single-well mode

    井位 去除率/% 达标时间/d 总抽出量/m3
    W1 78.78 440 15750
    W2 76.34 320 11550
    W3 78.42 410 14700
    下载: 导出CSV

    表 2  双井模式下不同井位的模拟结果

    Table 2.  Simulation results of different well locations in the double-well mode

    井间距/m去除率/%达标时间/d总抽出量/m³
    7.0779.2032010400
    14.1478.2629010400
    21.2176.8426011600
    28.2876.7626012800
    下载: 导出CSV

    表 3  三井模式下不同井位的模拟结果

    Table 3.  Simulation results of different well locations in the mitsui-well mode

    井间距/m 去除率/% 达标时间/d 总抽出量/m3
    7.07 79.46 240 10800
    14.14 80.99 270 12150
    21.21 81.15 310 13950
    下载: 导出CSV

    表 4  权重赋值

    Table 4.  The weight assignment

    决策变量 资金成本 时间成本
    情景1 情景2 情景3 情景4
    总资金成本 0.6 0.7 0.3 0.2
    达标时间 0.3 0.2 0.6 0.7
    污染物去除率 0.1 0.1 0.1 0.1
    下载: 导出CSV

    表 S1  各抽水方案模拟结果

    Table S1.  Simulation results of each pumping scheme

    模式 方案 井位 不同阶段下的抽水流量
    /(m3·d−1
    去除率
    /%
    达标时间
    /d
    总成本
    /万元
    去除率得分
    /分
    时间得分
    /分
    成本得分
    /分
    情景1
    /分
    情景2
    /分
    情景3
    /分
    情景4
    /分
    单井 1 W2 35 76.34 330 2.43 62.64 40.00 50.00 48.26 49.26 45.26 44.26
    2 35 30 75.23 360 2.46 49.44 20.00 40.00 34.94 36.94 28.94 26.94
    3 35 30 30 74.52 360 2.40 40.97 20.00 60.00 46.10 50.10 34.10 30.10
    4 35 30 25 73.57 390 2.43 29.62 0.00 50.00 32.96 37.96 17.96 12.96
    双井 5 W2、
    W4
    20 76.84 260 2.32 68.61 86.67 86.67 84.86 84.86 84.86 84.86
    6 20 15 75.51 310 2.46 52.78 53.33 40.00 45.28 43.94 49.28 50.61
    7 20 10 72.31 350 2.36 14.49 26.67 73.33 53.45 58.12 39.45 34.78
    8 20 15 15 75.09 330 2.46 47.78 40.00 40.00 40.78 40.78 40.78 40.78
    9 20 15 10 72.34 360 2.40 14.92 20.00 60.00 43.49 47.49 31.49 27.49
    10 W2 20 15 75.43 270 2.31 51.78 80.00 90.00 83.18 84.18 80.18 79.18
    W4 20 20
    11 W2 20 10 73.79 280 2.28 32.16 73.33 100.0 85.22 87.88 77.22 74.55
    W4 20 20
    12 W2 20 5 72.93 310 2.33 21.89 53.33 83.33 68.19 71.19 59.19 56.19
    W4 20 20
    13 W2 20 0 72.93 340 2.32 21.86 33.33 86.67 64.19 69.52 48.19 42.85
    W4 20 20
    14 W2 20 15 15 75.33 280 2.32 50.64 73.33 86.67 79.06 80.40 75.06 73.73
    W4 20 20 20
    15 W2 20 15 10 73.75 280 2.28 31.75 73.33 100.0 85.18 87.84 77.18 74.51
    W4 20 20 20
    16 W2 20 15 5 73.18 300 2.34 24.93 60.00 80.00 68.49 70.49 62.49 60.49
    W4 20 20 20
    17 W2 20 15 0 72.93 340 2.44 21.86 33.33 46.67 40.19 41.52 36.19 34.85
    W4 20 20 20
    三井 18 W2、
    W5、
    W4
    15 79.46 240 2.52 100.00 100.00 20.00 52.00 44.00 76.00 84.00
    19 15 10 76.36 280 2.58 62.97 73.33 0.00 28.30 20.96 50.30 57.63
    20 15 5 71.32 310 2.37 2.69 53.33 70.00 58.27 59.94 53.27 51.60
    21 15 10 10 75.70 310 2.58 54.98 53.33 0.00 21.50 16.16 37.50 42.83
    22 15 10 5 71.24 330 2.43 1.70 40.00 50.00 42.17 43.17 39.17 38.17
    23 W2 15 10 75.93 240 2.40 57.83 100.0 60.00 71.78 67.78 83.78 87.78
    W5 15 10
    W4 15 15
    24 W2 15 5 74.17 240 2.34 36.68 100.0 80.00 81.67 79.67 87.67 89.67
    W5 15 10
    W4 15 15
    25 W2 15 0 73.31 260 2.38 26.51 86.67 66.67 68.65 66.65 74.65 76.65
    W5 15 10
    W4 15 15
    26 W2 15 0 71.89 270 2.34 9.43 80.00 80.00 72.94 72.94 72.94 72.94
    W5 15 5
    W4 15 15
    27 W2 15 10 10 75.68 260 2.42 54.83 86.67 53.33 63.48 60.15 73.48 76.82
    W5 15 10 10
    W4 15 15 15
    28 W2 15 10 5 74.41 260 2.40 39.61 86.67 60.00 65.96 63.29 73.96 76.63
    W5 15 10 10
    W4 15 15 15
    29 W2 15 10 0 73.15 260 2.38 24.57 86.67 66.67 68.46 66.46 74.46 76.46
    W5 15 10 10
    W4 15 15 15
    三井 30 W2 15 5 0 72.96 290 2.41 22.27 66.67 56.67 56.23 55.23 59.23 60.23
    W5 15 10 10
    W4 15 15 15
    31 W2 15 0 0 73.77 340 2.54 31.94 33.33 13.33 21.19 19.19 27.19 29.19
    W5 15 10 10
    W4 15 15 15
    32 W2 15 10 0 71.98 260 2.36 10.56 86.67 73.33 71.06 69.72 75.06 76.39
    W5 15 10 5
    W4 15 15 15
    33 W2 15 10 0 71.10 270 2.37 0.00 80.00 70.00 66.00 65.00 69.00 70.00
    W5 15 10 0
    W4 15 15 15
    34 W2 15 10 0 71.37 340 2.46 3.32 33.33 40.00 34.33 35.00 32.33 31.67
    W5 15 5 0
    W4 15 15 15
      注:抽水流量按所划分阶段依次设置,方案1为单井模式恒定抽水流量的抽水方案;方案2为单井模式抽水时间(按360 d)划分2个阶段的抽水方案(即前180 d抽水流量为35 m3/d,后降至30 m3/d);方案3—4为单井模式抽水时间(按360 d)划分单个阶段的抽水方案;方案5为双井模式恒定抽水流量的抽水方案;方案6—9为双井模式划分不同阶段抽水流量相同的抽水方案;方案10—11为双井模式抽水流量不同时的抽水方案(如方案10,抽水时间划分2个阶段,前180 d W2、W4抽水流量为20 m3/d,后W2降至15 m3/d,W4不变);方案18—34为三井模式下的抽水方案,设计思路同双井。
    下载: 导出CSV
  • [1]

    FAN Yue,LU Wenxi,MIAO Tiansheng,et al. Optimal design of groundwater pollution monitoring network based on the SVR surrogate model under uncertainty[J]. Environmental Science and Pollution Research,2020,27(19):24090 − 24102. doi: 10.1007/s11356-020-08758-5

    [2]

    侯德义. 我国工业场地地下水污染防治十大科技难题[J]. 环境科学研究,2022,35(9):2015 − 2025. [HOU Deyi. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences,2022,35(9):2015 − 2025. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.04.18

    HOU Deyi. Ten grand challenges for groundwater pollution prevention and remediation at contaminated sites in China[J]. Research of Environmental Sciences, 2022, 359): 20152025. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.04.18

    [3]

    席北斗,李娟,汪洋,等. 京津冀地区地下水污染防治现状、问题及科技发展对策[J]. 环境科学研究,2019,32(1):1 − 9. [XI Beidou,LI Juan,WANG Yang,et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of beijing-Tianjin-hebei region:status quo,problems and goals[J]. Research of Environmental Sciences,2019,32(1):1 − 9. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2018.09.27

    XI Beidou, LI Juan, WANG Yang, et al. Strengthening the innovation capability of groundwater science and technology to support the coordinated development of beijing-Tianjin-hebei region: status quo, problems and goals[J]. Research of Environmental Sciences, 2019, 321): 19. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2018.09.27

    [4]

    荣志昊,史学峰,李昌武,等. 地下水抽提井的优化布置[J]. 广东化工,2022,49(7):145 − 146. [RONG Zhihao,SHI Xuefeng,LI Changwu,et al. The optimization of groundwater pumping well layout[J]. Guangdong Chemical Industry,2022,49(7):145 − 146. (in Chinese with English abstract)

    RONG Zhihao, SHI Xuefeng, LI Changwu, et al. The optimization of groundwater pumping well layout[J]. Guangdong Chemical Industry, 2022, 497): 145146. (in Chinese with English abstract)

    [5]

    张丽娜,姜林,贾晓洋,等. 地下水修复的技术不可达性及美国管理对策对我国的启示[J]. 环境科学研究,2022,35(5):1120 − 1130. [ZHANG Lina,JIANG Lin,JIA Xiaoyang,et al. Technical impracticability of groundwater remediation and management countermeasures in the USA and lessons learned for China[J]. Research of Environmental Sciences,2022,35(5):1120 − 1130. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.02.14

    ZHANG Lina, JIANG Lin, JIA Xiaoyang, et al. Technical impracticability of groundwater remediation and management countermeasures in the USA and lessons learned for China[J]. Research of Environmental Sciences, 2022, 355): 11201130. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2022.02.14

    [6]

    ZHA Yuanyuan,YEH T C J,ILLMAN W A,et al. Exploitation of pump-and-treat remediation systems for characterization of hydraulic heterogeneity[J]. Journal of Hydrology,2019,573:324 − 340. doi: 10.1016/j.jhydrol.2019.03.089

    [7]

    BORTONE I,ERTO A,DI NARDO A,et al. pump-and-treat configurations with vertical and horizontal wells to remediate an aquifer contaminated by hexavalent chromium[J]. Journal of Contaminant Hydrology,2020,235:103725. doi: 10.1016/j.jconhyd.2020.103725

    [8]

    赵乐,苏春利,谢先军,等. 基于数值模拟的某纳污坑塘地下水砷污染修复技术设计[J]. 安全与环境工程,2020,27(6):74 − 80. [ZHAO Le,SU Chunli,XIE Xianjun,et al. Design of remediation technology for arsenic pollution of groundwater in a pollutant pond based on numerical simulation[J]. Safety and Environmental Engineering,2020,27(6):74 − 80. (in Chinese with English abstract)

    ZHAO Le, SU Chunli, XIE Xianjun, et al. Design of remediation technology for arsenic pollution of groundwater in a pollutant pond based on numerical simulation[J]. Safety and Environmental Engineering, 2020, 276): 7480. (in Chinese with English abstract)

    [9]

    COHEN R M, MERCER J W, GREENWALD R M, et al. Ground water issue: Design guidelines for conventional pump-and-treat systems[Z]. 1997:1-39.

    [10]

    王平,韩占涛,张海领,等. 某氨氮污染地下水体抽出-处理系统优化模拟研究[J]. 水文地质工程地质,2020,47(3):34 − 43. [WANG Ping,HAN Zhantao,ZHANG Hailing,et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology,2020,47(3):34 − 43. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907053

    WANG Ping, HAN Zhantao, ZHANG Hailing, et al. Simulation and optimization of a pumping and treating system for the remediation of ammonia polluted groundwater[J]. Hydrogeology & Engineering Geology, 2020, 473): 3443. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907053

    [11]

    姜烈,何江涛,姜永海,等. 地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学,2014,35(7):2572 − 2578. [JIANG Lie,HE Jiangtao,JIANG Yonghai,et al. Simulation of nitrate pollution in groundwater using pump-and-treat optimization method[J]. Environmental Science,2014,35(7):2572 − 2578. (in Chinese with English abstract) doi: 10.13227/j.hjkx.2014.07.019

    JIANG Lie, HE Jiangtao, JIANG Yonghai, et al. Simulation of nitrate pollution in groundwater using pump-and-treat optimization method[J]. Environmental Science, 2014, 357): 25722578. (in Chinese with English abstract) doi: 10.13227/j.hjkx.2014.07.019

    [12]

    杜川,李厚恩,陈素云. 数值模拟技术在污染地下水抽出-处理运行中的应用[J]. 环境工程,2023,41(7):102 − 108. [DU Chuan,LI Houen,CHEN Suyun. Application of numerical simulation technology in extraction andtreatment of polluted groundwater[J]. Environmental Engineering,2023,41(7):102 − 108. (in Chinese with English abstract)

    DU Chuan, LI Houen, CHEN Suyun. Application of numerical simulation technology in extraction andtreatment of polluted groundwater[J]. Environmental Engineering, 2023, 417): 102108. (in Chinese with English abstract)

    [13]

    MANTOGLOU A,KOURAKOS G. Optimal groundwater remediation under uncertainty using multi-objective optimization[J]. Water Resources Management,2007,21(5):835 − 847. doi: 10.1007/s11269-006-9109-0

    [14]

    HOU Zeyu,LU Wenxi,XUE Haibo,et al. A comparative research of different ensemble surrogate models based on set pair analysis for the DNAPL-contaminated aquifer remediation strategy optimization[J]. Journal of Contaminant Hydrology,2017,203:28 − 37. doi: 10.1016/j.jconhyd.2017.06.003

    [15]

    BECKER D,MINSKER B,GREENWALD R,et al. Reducing long-term remedial costs by transport modeling optimization[J]. Groundwater,2006,44(6):864 − 875. doi: 10.1111/j.1745-6584.2006.00242.x

    [16]

    李娟,尉鹏,戴学之,等. 基于机器学习方法的西安市数值模拟优化研究[J]. 环境科学研究,2021,34(4):872 − 881. [LI Juan,YU Peng,DAI Xuezhi,et al. Optimization of numerical simulation in Xi’ an based on machine learning methods[J]. Research of Environmental Sciences,2021,34(4):872 − 881. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2020.10.27

    LI Juan, YU Peng, DAI Xuezhi, et al. Optimization of numerical simulation in Xi’ an based on machine learning methods[J]. Research of Environmental Sciences, 2021, 344): 872881. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2020.10.27

    [17]

    闫佰忠,徐文杰,李玉涵,等. 地下水源热泵抽灌井优化布置及参数灵敏度[J]. 吉林大学学报(地球科学版),2023,53(1):218 − 229. [YAN Baizhong,XU Wenjie,LI Yuhan,et al. Optimal layout of pumping and recharging wells for groundwater source heat pump and parameter sensitivity[J]. Journal of Jilin University (Earth Science Edition),2023,53(1):218 − 229. (in Chinese with English abstract)

    YAN Baizhong, XU Wenjie, LI Yuhan, et al. Optimal layout of pumping and recharging wells for groundwater source heat pump and parameter sensitivity[J]. Journal of Jilin University (Earth Science Edition), 2023, 531): 218229. (in Chinese with English abstract)

    [18]

    AHLFELD D P,MULVEY J M,PINDER G F,et al. Contaminated groundwater remediation design using simulation,optimization,and sensitivity theory:1. Model development[J]. Water Resources Research,1988,24(3):431 − 441. doi: 10.1029/WR024i003p00431

    [19]

    AHLFELD D P,MULVEY J M,PINDER G F. Contaminated groundwater remediation design using simulation,optimization,and sensitivity theory:2. Analysis of a field site[J]. Water Resources Research,1988,24(3):443 − 452. doi: 10.1029/WR024i003p00443

    [20]

    MCKINNEY D C,LIN M D. Genetic algorithm solution of groundwater management models[J]. Water Resources Research,1994,30(6):1897 − 1906. doi: 10.1029/94WR00554

    [21]

    CULVER T B,SHOEMAKER C A. Optimal control for groundwater remediation by differential dynamic programming with Quasi-Newton Approximations[J]. Water Resources Research,1993,29(4):823 − 831. doi: 10.1029/92WR02480

    [22]

    王浩然. 地下水开采条件下的微分动态规划模型[D]. 南京:南京大学,2000. [WANG Haoran. Differential dynamic programming model under the condition of groundwater exploitation[D]. Nanjing:Nanjing University,2000. (in Chinese with English abstract)

    WANG Haoran. Differential dynamic programming model under the condition of groundwater exploitation[D]. Nanjing: Nanjing University, 2000. (in Chinese with English abstract)

    [23]

    CULVER T B,SHENK G W. Dynamic optimal ground water remediation by granular activated carbon[J]. Journal of Water Resources Planning and Management,1998,124(1):59 − 64. doi: 10.1061/(ASCE)0733-9496(1998)124:1(59)

    [24]

    宫志强,刘明柱,刘伟江,等. 单井捕获地下水污染羽的优化方法[J]. 环境工程学报,2019,13(10):2468 − 2474. [GONG Zhiqiang,LIU Mingzhu,LIU Weijiang,et al. Optimal method of groundwater pollution plume capture by single well[J]. Chinese Journal of Environmental Engineering,2019,13(10):2468 − 2474. (in Chinese with English abstract) doi: 10.12030/j.cjee.201812028

    GONG Zhiqiang, LIU Mingzhu, LIU Weijiang, et al. Optimal method of groundwater pollution plume capture by single well[J]. Chinese Journal of Environmental Engineering, 2019, 1310): 24682474. (in Chinese with English abstract) doi: 10.12030/j.cjee.201812028

    [25]

    REZAEI H,BOZORG-HADDAD O,LOÁICIGA H A. Reliability-based multi-objective optimization of groundwater remediation[J]. Water Resources Management,2020,34(10):3079 − 3097. doi: 10.1007/s11269-020-02573-w

    [26]

    YANG Yun,WU Jichun,LUO Qiankun,et al. An effective multi-objective optimization approach for groundwater remediation considering the coexisting uncertainties of aquifer parameters[J]. Journal of Hydrology,2022,609:127677. doi: 10.1016/j.jhydrol.2022.127677

    [27]

    林茂,苏婧,孙源媛,等. 基于脆弱性的地下水污染监测网多目标优化方法[J]. 环境科学研究,2018,31(1):79 − 86. [LIN Mao,SU Jing,SUN Yuanyuan,et al. Multi-objective optimization method for groundwater contamination monitoring network based on vulnerability assessment[J]. Research of Environmental Sciences,2018,31(1):79 − 86. (in Chinese with English abstract)

    LIN Mao, SU Jing, SUN Yuanyuan, et al. Multi-objective optimization method for groundwater contamination monitoring network based on vulnerability assessment[J]. Research of Environmental Sciences, 2018, 311): 7986. (in Chinese with English abstract)

    [28]

    张艳. 污染场地抽出—处理技术影响因素及优化方案研究[D]. 北京:中国地质大学(北京),2010. [ZHANG Yan. Factors and optimization research of pump-and-treat technology in contaminated site[D]. Beijing:China University of Geosciences,2010. (in Chinese with English abstract)

    ZHANG Yan. Factors and optimization research of pump-and-treat technology in contaminated site[D]. Beijing: China University of Geosciences, 2010. (in Chinese with English abstract)

    [29]

    鞠晓明. 地下水污染场地水力控制优化方案研究[D]. 北京:中国地质大学(北京),2011. [JU Xiaoming. Optimization of hydraulic control programs for groundwater contaminated sites[D]. Beijing:China University of Geosciences,2011. (in Chinese with English abstract)

    JU Xiaoming. Optimization of hydraulic control programs for groundwater contaminated sites[D]. Beijing: China University of Geosciences, 2011. (in Chinese with English abstract)

    [30]

    牛浩博,魏亚强,李璐,等. 基于数值模拟的某地下水污染场地抽水方案设计[J]. 环境保护科学,2021,47(5):69 − 75. [NIU Haobo,WEI Yaqiang,LI Lu,et al. Design of pumping project for a groundwater contaminated site based on numerical simulation[J]. Environmental Protection Science,2021,47(5):69 − 75. (in Chinese with English abstract) doi: 10.16803/j.cnki.issn.1004-6216.2021.05.012

    NIU Haobo, WEI Yaqiang, LI Lu, et al. Design of pumping project for a groundwater contaminated site based on numerical simulation[J]. Environmental Protection Science, 2021, 475): 6975. (in Chinese with English abstract) doi: 10.16803/j.cnki.issn.1004-6216.2021.05.012

    [31]

    中国地质调查局. 水文地质手册[M]. 北京:地质出版社,2012. [China Geological Survey. Handbook of hydrogeology[M]. Beijing:Geological Publishing House,2012. (in Chinese with English abstract)

    China Geological Survey. Handbook of hydrogeology[M]. Beijing: Geological Publishing House, 2012. (in Chinese with English abstract)

    [32]

    刘玲,陈坚,牛浩博,等. 基于FEFLOW的三维土壤-地下水耦合铬污染数值模拟研究[J]. 水文地质工程地质,2022,49(1):164 − 174. [LIU Ling,CHEN Jian,NIU Haobo,et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology,2022,49(1):164 − 174. (in Chinese with English abstract)

    LIU Ling, CHEN Jian, NIU Haobo, et al. Numerical simulation of three-dimensional soil-groundwater coupled chromium contamination based on FEFLOW[J]. Hydrogeology & Engineering Geology, 2022, 491): 164174. (in Chinese with English abstract)

    [33]

    万鹏,张旭,李广贺,等. 基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究,2016,29(11):1608 − 1616. [WAN Peng,ZHANG Xu,LI Guanghe,et al. Designof contaminant groundwater pumping scheme based on a simulation optimization model[J]. Research of Environmental Sciences,2016,29(11):1608 − 1616. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2016.11.06

    WAN Peng, ZHANG Xu, LI Guanghe, et al. Designof contaminant groundwater pumping scheme based on a simulation optimization model[J]. Research of Environmental Sciences, 2016, 2911): 16081616. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2016.11.06

    [34]

    卞荣伟,宋健,孙晓敏,等. MGO软件在地下水污染抽出-处理方案优化中的应用[J]. 地下水,2018,40(3):12 − 15. [BIAN Rongwei,SONG Jian,SUN Xiaomin,et al. Application of MGO to optimal design of pump and treat system in groundwater contamination remediation[J]. Ground Water,2018,40(3):12 − 15. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2018.03.004

    BIAN Rongwei, SONG Jian, SUN Xiaomin, et al. Application of MGO to optimal design of pump and treat system in groundwater contamination remediation[J]. Ground Water, 2018, 403): 1215. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2018.03.004

    [35]

    张然. 污水处理成本结构及变化趋势研究——基于污水处理上市公司数据的分析[J]. 价格理论与实践,2020(10):27 − 30. [ZHANG Ran. Research on structure and change trend of sewage treatment cost—analysis based on the date of sewage treatment listed companies[J]. Price:Theory & Practice,2020(10):27 − 30. (in Chinese with English abstract) doi: 10.19851/j.cnki.CN11-1010/F.2020.10.428

    ZHANG Ran. Research on structure and change trend of sewage treatment cost—analysis based on the date of sewage treatment listed companies[J]. Price: Theory & Practice, 202010): 2730. (in Chinese with English abstract) doi: 10.19851/j.cnki.CN11-1010/F.2020.10.428

    [36]

    宫志强,陈坚,杨鑫鑫,等. 某铬污染场地地下水抽水方案优化[J]. 环境工程,2019,37(5):1 − 3. [GONG Zhiqiang,CHEN Jian,YANG Xinxin,et al. Optimization of groundwater pumping scheme in a chromium-contaminated site[J]. Environmental Engineering,2019,37(5):1 − 3. (in Chinese with English abstract)

    GONG Zhiqiang, CHEN Jian, YANG Xinxin, et al. Optimization of groundwater pumping scheme in a chromium-contaminated site[J]. Environmental Engineering, 2019, 375): 13. (in Chinese with English abstract)

    [37]

    KO N Y,LEE Kangkun,HYUN Y. Optimal groundwater remediation design of a pump and treat system considering clean-up time[J]. Geosciences Journal,2005,9(1):23 − 31. doi: 10.1007/BF02910551

    [38]

    孙军亮,宫志强,李璐,等. 某氯代烃污染场地地下水抽出方案优化[J]. 环境工程,2021,39(11):172 − 178. [SUN Junliang,GONG Zhiqiang,LI Lu,et al. Optimization of groundwater pumping scheme for a chlorinated hydrocarbon-contaminated site[J]. Environmental Engineering,2021,39(11):172 − 178. (in Chinese with English abstract)

    SUN Junliang, GONG Zhiqiang, LI Lu, et al. Optimization of groundwater pumping scheme for a chlorinated hydrocarbon-contaminated site[J]. Environmental Engineering, 2021, 3911): 172178. (in Chinese with English abstract)

    [39]

    耿国婷,武晓峰,游进军. 基于遗传算法的TCE污染地下水修复抽水处理优化方案研究[J]. 水利水电技术(中英文),2022,53(7):69 − 81. [GENG Guoting,WU Xiaofeng,YOU Jinjun. Genetic algorithm-based study on optimization scheme for remediation of TCE-contaminated groundwater with pump-and-treat system[J]. Water Resources and Hydropower Engineering,2022,53(7):69 − 81. (in Chinese with English abstract)

    GENG Guoting, WU Xiaofeng, YOU Jinjun. Genetic algorithm-based study on optimization scheme for remediation of TCE-contaminated groundwater with pump-and-treat system[J]. Water Resources and Hydropower Engineering, 2022, 537): 6981. (in Chinese with English abstract)

    [40]

    白相东,张艳,刘智荣,等. 某冶炼厂污染场地抽出-处理技术优化方案研究[J]. 防灾科技学院学报,2012,14(4):23 − 26. [BAI Xiangdong,ZHANG Yan,LIU Zhirong,et al. pump and retreat—processing optimization plan of a smelter contaminated site[J]. Journal of Institute of Disaster Prevention,2012,14(4):23 − 26. (in Chinese with English abstract)

    BAI Xiangdong, ZHANG Yan, LIU Zhirong, et al. pump and retreat—processing optimization plan of a smelter contaminated site[J]. Journal of Institute of Disaster Prevention, 2012, 144): 2326. (in Chinese with English abstract)

    [41]

    周新民,郭瑜. 多指标决策的主客观权重模糊优选法[C]// 第28届中国控制与决策会议论文集. 银川,2016:380−384. [ZHOU Xinmin,GUO Yu. Multi objective decision for the fuzzy optimization method of subjective and objective weight[C]//Proceedings of 2016 28th Chinese Control and Decision Conference(CCDC). Yinchuan,2016:380−384. (in Chinese with English abstract)

    ZHOU Xinmin, GUO Yu. Multi objective decision for the fuzzy optimization method of subjective and objective weight[C]//Proceedings of 2016 28th Chinese Control and Decision Conference(CCDC). Yinchuan, 2016: 380−384. (in Chinese with English abstract)

  • 加载中

(13)

(5)

计量
  • 文章访问数:  593
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2022-12-19
修回日期:  2023-02-13
刊出日期:  2024-01-15

目录