An experimental study on the pullout mechanical property of tortuous roots manufactured from 3D printing
-
摘要:
天然根系具有不同弯曲形态,对根土相互作用特性影响极大。以往研究多将根系视为顺直,未充分考虑弯曲根系拉拔受力变形特征、破坏模式。利用3D打印技术制作弯曲根系,开展3种根径(2.0,3.5,5.0 mm)、5种弯曲度(1.00,1.05,1.10,1.15,1.20)的根系拉伸、拉拔试验,探索弯曲根系的拉拔力学特性。结果表明:根系拉伸特性受到弯曲结构和自身材料性质共同影响,根系最大拉伸力、拉伸变形刚度随弯曲度增加而减小,随直径增加而增大;根系峰值拉拔力随弯曲度增加呈先增大后减小,弯曲度1.15时最大,峰值拉拔位移呈类似变化趋势;弯曲根系齿肋挤压土体形成啮合作用,有助于增强根土相互作用;弯曲细根系的拉伸力和拉伸刚度低,更容易与土体协同变形承担拉拔荷载。弯曲根系受力变形与直根系差异极大,研究结果可为弯曲形态根系固土评价提供理论参考。
Abstract:Natural roots systems exhibit various tortuous morphologies, which significantly impact the root-soil interaction characteristics. Previous studies often treated root systems as straight, neglecting the deformation characteristics and failure modes of tortuous root systems under tensile loads. In this study, tensile test and pullout test are conducted by using tortuous roots manufactured from 3D printing technology with three different root diameters (2.0, 3.5 and 5.0 mm) and five root tortuosity (1.00, 1.05, 1.10, 1.15, 1.20), and the pullout behaviours of tortuous roots are explored. The results indicate that the tensile properties of root systems are influenced by both the tortuous structure and the material properties. The ultimate tensile force and tensile stiffness decreases with increasing tortuosity but increase with increasing diameter. The peak pull-out force of the root system initially increases and then decreases with tortuosity, reaching a maximum value when tortuosity is equal to 1.15. The peak pull-out displacement shows a similar trend. The tortuous root system forms an engaging effect with the soil by compressing the soil ribs, enhancing the interaction between roots and soil. The tensile force and stiffness of the tortuous fine root system are low, making it more prone to coordinate deformation with the soil to bear tensile loads. The deformation under stress of tortuous root systems differs significantly from that of straight root systems. This study provides theoretical references for the evaluation of soil-reinforcement by root system.
-
Key words:
- 3D printing /
- tortuous root /
- pullout test /
- root-soil interaction /
- peak pullout force
-
-
表 1 弯曲根系的形态参数
Table 1. Morphological parameters of tortuous roots
试样 根系直径/mm 根系弯曲总长度/mm 根系弯曲度 S1 2.0,3.5,5.0 100 1.00 S2 1.05 S3 1.10 S4 1.15 S5 1.20 表 2 土体的物理特性指标
Table 2. Physical characteristics of soil
干密度
/(g∙cm−3)含水率
/%粒径分布/% <0.075 mm 0.075~
<0.25 mm0.25~
<0.5 mm0.5~
<1 mm1~
2 mm1.45 15.0 3.53 39.61 22.94 18.02 15.90 -
[1] 钟彩尹,李鹏程,马滔,等. 根-土复合体的三轴试验及其强度分析[J]. 水文地质工程地质,2022,49(6):97 − 104. [ZHONG Caiyin,LI Pengcheng,MA Tao,et al. Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology,2022,49(6):97 − 104. (in Chinese with English abstract)
ZHONG Caiyin, LI Pengcheng, MA Tao, et al . Triaxial test and strength analysis of root-soil composite[J]. Hydrogeology & Engineering Geology,2022 ,49 (6 ):97 −104 . (in Chinese with English abstract)[2] VERGANI C,GIADROSSICH F,BUCKLEY P,et al. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides:A review[J]. Earth-Science Reviews,2017,167:88 − 102. doi: 10.1016/j.earscirev.2017.02.002
[3] 胡卸文,侯羿腾,王严,等. 火烧迹地土壤根系特征及其对抗剪强度的影响[J]. 水文地质工程地质,2019,46(5):106 − 112. [HU Xiewen,HOU Yiteng,WANG Yan,et al. Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019,46(5):106 − 112. (in Chinese with English abstract)
HU Xiewen, HOU Yiteng, WANG Yan, et al . Root characteristics and its influences on shear strength in burned areas[J]. Hydrogeology & Engineering Geology,2019 ,46 (5 ):106 −112 . (in Chinese with English abstract)[4] GIADROSSICH F,SCHWARZ M,COHEN D,et al. Mechanical interactions between neighbouring roots during pullout tests[J]. Plant and Soil,2013,367(1):391 − 406.
[5] 胡夏嵩,陈桂琛,周国英,等. 青藏铁路沱沱河段路基边坡植物护坡根系力学强度试验研究[J]. 水文地质工程地质,2012,39(1):107 − 113. [HU Xiasong,CHEN Guichen,ZHOU Guoying,et al. A study of the mechanic strength of vegetation roots for roadbed slope protection in the Tuotuohe River region along the Qinghai-Tibet railway[J]. Hydrogeology & Engineering Geology,2012,39(1):107 − 113. (in Chinese with English abstract)
HU Xiasong, CHEN Guichen, ZHOU Guoying, et al . A study of the mechanic strength of vegetation roots for roadbed slope protection in the Tuotuohe River region along the Qinghai-Tibet railway[J]. Hydrogeology & Engineering Geology,2012 ,39 (1 ):107 −113 . (in Chinese with English abstract)[6] 王桂尧,胡圣辉,张永杰,等. 小乔木根系根土间作用力的室外拉拔试验研究[J]. 水文地质工程地质,2017,44(6):64 − 69. [WANG Guiyao,HU Shenghui,ZHANG Yongjie,et al. An outdoor drawing test study of the root soil interaction force for a small tree root system[J]. Hydrogeology & Engineering Geology,2017,44(6):64 − 69. (in Chinese with English abstract)
WANG Guiyao, HU Shenghui, ZHANG Yongjie, et al . An outdoor drawing test study of the root soil interaction force for a small tree root system[J]. Hydrogeology & Engineering Geology,2017 ,44 (6 ):64 −69 . (in Chinese with English abstract)[7] 刘亚斌,胡夏嵩,余冬梅,等. 西宁盆地黄土区2种灌木植物根-土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报,2018,37(5):1270 − 1280. [LIU Yabin,HU Xiasong,YU Dongmei,et al. Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(5):1270 − 1280. (in Chinese with English abstract)
LIU Yabin, HU Xiasong, YU Dongmei, et al . Microstructural features and friction characteristics of the interface of shrub roots and soil in loess area of Xining Basin[J]. Chinese Journal of Rock Mechanics and Engineering,2018 ,37 (5 ):1270 −1280 . (in Chinese with English abstract)[8] JI Xiaodong,CONG Xu,DAI Xianqing,et al. Studying the mechanical properties of the soil-root interface using the pullout test method[J]. Journal of Mountain Science,2018,15(4):882 − 893. doi: 10.1007/s11629-015-3791-4
[9] 肖海,张千恒,夏振尧,等. 拉拔作用下护坡植物香根草根系的力学性能[J]. 农业工程学报,2022,38(11):91 − 97. [XIAO Hai,ZHANG Qianheng,XIA Zhenyao,et al. Mechanical properties of roots of Vetiveria zizanioides as protection slope plants under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(11):91 − 97. (in Chinese with English abstract)
XIAO Hai, ZHANG Qianheng, XIA Zhenyao, et al . Mechanical properties of roots of Vetiveria zizanioides as protection slope plants under tensile and pullout conditions[J]. Transactions of the Chinese Society of Agricultural Engineering,2022 ,38 (11 ):91 −97 . (in Chinese with English abstract)[10] DUPUY L,FOURCAUD T,STOKES A. A numerical investigation into factors affecting the anchorage of roots in tension[J]. European Journal of Soil Science,2005,56(3):319 − 327. doi: 10.1111/j.1365-2389.2004.00666.x
[11] SCHWARZ M,COHEN D,OR D. Root-soil mechanical interactions during pullout and failure of root bundles[J]. Journal of Geophysical Research:Earth Surface,2010,115(F4):F04035.
[12] SCHWARZ M,COHEN D,OR D. Pullout tests of root analogs and natural root bundles in soil:Experiments and modeling[J]. Journal of Geophysical Research:Earth Surface,2011,116(F2):F02007.
[13] MICKOVSKI S B,BENGOUGH A G,BRANSBY M F,et al. Material stiffness,branching pattern and soil matric potential affect the pullout resistance of model root systems[J]. European Journal of Soil Science,2007,58(6):1471 − 1481. doi: 10.1111/j.1365-2389.2007.00953.x
[14] 吴鹏,谢朋成,宋文龙,等. 基于根系形态的植物根系力学与固土护坡作用机理[J]. 东北林业大学学报,2014,42(5):139 − 142. [WU Peng,XIE Pengcheng,SONG Wenlong,et al. Morphology-based plant root mechanics and function mechanism for slope stabilization[J]. Journal of Northeast Forestry University,2014,42(5):139 − 142. (in Chinese with English abstract)
WU Peng, XIE Pengcheng, SONG Wenlong, et al . Morphology-based plant root mechanics and function mechanism for slope stabilization[J]. Journal of Northeast Forestry University,2014 ,42 (5 ):139 −142 . (in Chinese with English abstract)[15] LIANG T,KNAPPETT J A,DUCKETT N. Modelling the seismic performance of rooted slopes from individual root-soil interaction to global slope behaviour[J]. Géotechnique,2015,65(12):995 − 1009.
[16] 姜尧,及金楠,刘迅,等. 基于仿生材料的根系固土力学机制[J]. 中国水土保持科学,2022,20(2):58 − 64. [JIANG Yao,JI Jinnan,LIU Xun,et al. Root reinforcement mechanism based on bionic materials[J]. Science of Soil and Water Conservation,2022,20(2):58 − 64. (in Chinese with English abstract) doi: 10.16843/j.sswc.2022.02.008
doi: 10.16843/j.sswc.2022.02.008JIANG Yao, JI Jinnan, LIU Xun, et al . Root reinforcement mechanism based on bionic materials[J]. Science of Soil and Water Conservation,2022 ,20 (2 ):58 −64 . (in Chinese with English abstract)[17] 潘露. 护坡灌木根系形态对根系力学特性影响研究[D]. 贵阳:贵州大学,2021. [PAN Lu. Study on the influence of root morphology of slope protection shrub on root mechanical characteristics[D]. Guiyang:Guizhou University,2021. (in Chinese with English abstract)
PAN Lu. Study on the influence of root morphology of slope protection shrub on root mechanical characteristics[D]. Guiyang: Guizhou University, 2021. (in Chinese with English abstract) [18] 王智,于宁,黎静. 熔融沉积纤维增强复合材料的研究进展[J]. 材料导报,2021,35(15):15197 − 15204. [WANG Zhi,YU Ning,LI Jing. Research progress in fused deposition modeling of fiber-reinforced composites[J]. Materials Reports,2021,35(15):15197 − 15204. (in Chinese with English abstract)
WANG Zhi, YU Ning, LI Jing . Research progress in fused deposition modeling of fiber-reinforced composites[J]. Materials Reports,2021 ,35 (15 ):15197 −15204 . (in Chinese with English abstract)[19] FAN Chiacheng. A displacement-based model for estimating the shear resistance of root-permeated soils[J]. Plant and Soil,2012,355:103 − 119. doi: 10.1007/s11104-011-1084-4
[20] OPERSTEIN V,FRYDMAN S. The influence of vegetation on soil strength[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2000,4(2):81 − 89. doi: 10.1680/grim.2000.4.2.81
[21] FAN Chiacheng,TSAI Minghung. Spatial distribution of plant root forces in root-permeated soils subject to shear[J]. Soil and Tillage Research,2016,156:1 − 15. doi: 10.1016/j.still.2015.09.016
[22] FAN Chiacheng,CHEN Yuwen. The effect of root architecture on the shearing resistance of root-permeated soils[J]. Ecological Engineering,2010,36(6):813 − 826. doi: 10.1016/j.ecoleng.2010.03.003
[23] 管世烽,夏振尧,张伦,等. 水平荷载作用下多花木蓝根系拉拔试验研究[J]. 长江科学院院报,2016,33(6):24 − 28. [GUAN Shifeng,XIA Zhenyao,ZHANG Lun,et al. Pull-out test of indigofera amblyantha craib root under horizontal load[J]. Journal of Yangtze River Scientific Research Institute,2016,33(6):24 − 28. (in Chinese with English abstract)
GUAN Shifeng, XIA Zhenyao, ZHANG Lun, et al . Pull-out test of indigofera amblyantha craib root under horizontal load[J]. Journal of Yangtze River Scientific Research Institute,2016 ,33 (6 ):24 −28 . (in Chinese with English abstract)[24] 韩朝,冀晓东,刘小光,等. 北方5种常见乔木根-土摩擦锚固性能研究[J]. 北京林业大学学报,2020,42(9):80 − 91. [HAN Chao,JI Xiaodong,LIU Xiaoguang,et al. Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University,2020,42(9):80 − 91. (in Chinese with English abstract)
HAN Chao, JI Xiaodong, LIU Xiaoguang, et al . Tribological properties between roots and soil of five common tree species in North China[J]. Journal of Beijing Forestry University,2020 ,42 (9 ):80 −91 . (in Chinese with English abstract)[25] 那顺. 北沙柳等4种植物根-土界面拉拔摩阻特性研究[D]. 呼和浩特:内蒙古农业大学,2021. [NA Shun. The study on the friction drag characteristics of root-soil interface of four plants including Salix psammophila[D]. Hohhot:Inner Mongolia Agricultural University,2021. (in Chinese with English abstract)
NA Shun. The study on the friction drag characteristics of root-soil interface of four plants including Salix psammophila[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese with English abstract) [26] COMMANDEUR P R,PYLES M R. Modulus of elasticity and tensile strength of Douglas-fir roots[J]. Canadian Journal of Forest Research,1991,21(1):48 − 52. doi: 10.1139/x91-007
[27] 郑力文,刘小光,余新晓,等. 油松根系直径对根-土界面摩擦性能的影响[J]. 北京林业大学学报,2014,36(3):90 − 94. [ZHENG Liwen,LIU Xiaoguang,YU Xinxiao,et al. Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface[J]. Journal of Beijing Forestry University,2014,36(3):90 − 94. (in Chinese with English abstract)
ZHENG Liwen, LIU Xiaoguang, YU Xinxiao, et al . Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface[J]. Journal of Beijing Forestry University,2014 ,36 (3 ):90 −94 . (in Chinese with English abstract)[28] SU Lijun,HU Bingli,XIE Qijun,et al. Experimental and theoretical study of mechanical properties of root-soil interface for slope protection[J]. Journal of Mountain Science,2020,17(11):2784 − 2795. doi: 10.1007/s11629-020-6077-4
[29] 李国荣,胡夏嵩,毛小青,等. 寒旱环境黄土区灌木根系护坡力学效应研究[J]. 水文地质工程地质,2008,35(1):94 − 97. [LI Guorong,HU Xiasong,MAO Xiaoqing,et al. A study of the mechanical effects of shrub roots for slope protection in frigid and arid-semiarid loess area[J]. Hydrogeology & Engineering Geology,2008,35(1):94 − 97. (in Chinese with English abstract)
LI Guorong, HU Xiasong, MAO Xiaoqing, et al . A study of the mechanical effects of shrub roots for slope protection in frigid and arid-semiarid loess area[J]. Hydrogeology & Engineering Geology,2008 ,35 (1 ):94 −97 . (in Chinese with English abstract) -