砂砾土渗流侵蚀中细粒迁移-沉积-滤通的物理水力临界条件

董辉, 谭凤鸣, 程子华, 高乾丰, 任佳展. 砂砾土渗流侵蚀中细粒迁移-沉积-滤通的物理水力临界条件[J]. 水文地质工程地质, 2024, 51(1): 69-81. doi: 10.16030/j.cnki.issn.1000-3665.202301023
引用本文: 董辉, 谭凤鸣, 程子华, 高乾丰, 任佳展. 砂砾土渗流侵蚀中细粒迁移-沉积-滤通的物理水力临界条件[J]. 水文地质工程地质, 2024, 51(1): 69-81. doi: 10.16030/j.cnki.issn.1000-3665.202301023
DONG Hui, TAN Fengming, CHENG Zihua, GAO Qianfeng, REN Jiazhan. Critical physical and hydraulic condition for fine grains migration, deposition and self-dredging in seepage erosion of gravel soil[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 69-81. doi: 10.16030/j.cnki.issn.1000-3665.202301023
Citation: DONG Hui, TAN Fengming, CHENG Zihua, GAO Qianfeng, REN Jiazhan. Critical physical and hydraulic condition for fine grains migration, deposition and self-dredging in seepage erosion of gravel soil[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 69-81. doi: 10.16030/j.cnki.issn.1000-3665.202301023

砂砾土渗流侵蚀中细粒迁移-沉积-滤通的物理水力临界条件

  • 基金项目: 国家自然科学基金项目(42272304);湖南省教育厅科学研究项目(22C0046)
详细信息
    作者简介: 董辉(1976—),男,博士,教授,博士研究生导师,主要从事环境地质与地质灾害研究。E-mail:donghui@xtu.edu.cn
  • 中图分类号: P642.2;TU42

Critical physical and hydraulic condition for fine grains migration, deposition and self-dredging in seepage erosion of gravel soil

  • 细粒迁移机制是理解砂砾土渗流侵蚀过程的基础与关键,对研究砂砾土斜坡雨水侵蚀过程的细观致灾机制具有重要意义。目前其运移模式及运移状态发生转变的临界条件并不清晰,不同物理水力条件下的细粒运动类型有所不同。为掌握砂砾土侵蚀过程中细粒的整体运动类型及其发生改变的临界条件,采用可视圆柱入渗试验和离散元数值模拟,分析了细粒迁移的影响因素和内部机理。结果表明:(1)细粒迁移受级配和水力梯度影响显著,而受初始孔隙率影响不显著,且级配的影响大于水力梯度;(2)水力作用下细粒整体运动状态可分为沉积和滤通2种模式,内部结构不稳定的砂砾土细粒运动处于滤通状态,内部结构稳定和稳定性过渡型砂砾土随水力梯度升高细粒的运动状态从整体沉积转变为整体滤通;(3)细粒运动状态在粒径比和水力梯度共同作用下存在明显界限,最终得到细粒沉积-滤通转变的临界条件为$ i = 3.4 - $$ 0.12{{\text{e}}^{\left( {{D_{15}}/{d_{85}}} \right)/1.5}} $。研究可为砂砾土斜坡渗蚀失稳防护提供理论指导。

  • 加载中
  • 图 1  红色示踪颗粒显示效果

    Figure 1. 

    图 2  物理试样及数值模型级配曲线

    Figure 2. 

    图 3  物理试验系统示意图

    Figure 3. 

    图 4  数值模型示意图

    Figure 4. 

    图 5  数值模型准确性验证试验

    Figure 5. 

    图 6  A1三轴试验与B1数值模拟的应力应变曲线

    Figure 6. 

    图 7  数值模拟累积质量侵蚀率与试验结果比较

    Figure 7. 

    图 8  B6在不同水力梯度下渗透系数变化率

    Figure 8. 

    图 9  A6在不同水力梯度下的细粒典型运动图像

    Figure 9. 

    图 10  A6在不同水力梯度下渗透系数变化率

    Figure 10. 

    图 11  B6在不同水力梯度下的细粒整体迁移图像

    Figure 11. 

    图 12  最终细粒累积侵蚀率随水力梯度变化

    Figure 12. 

    图 13  初始孔隙率为0.3时最终细粒累积侵蚀率与Cu和水力梯度的关系

    Figure 13. 

    图 14  初始孔隙率为0.3,级配不同的试样在不同水力梯度下渗透系数变化率随时间的变化规律

    Figure 14. 

    图 15  初始孔隙率为0.3,级配不同的试样在不同水力梯度下平均配位数随时间发展规律

    Figure 15. 

    图 16  水力和几何条件共同作用下的颗粒整体运动状态及临界状态曲线

    Figure 16. 

    图 17  B3局部区域在不同水力条件下的孔隙率、流速、颗粒间平均接触力随时间变化

    Figure 17. 

    图 18  水力特性与颗粒力学行为之间可能的联系

    Figure 18. 

    表 1  数值模型相关参数

    Table 1.  Related parameters of numerical model

    固体 流体
    密度/
    ${\text{(kg}} \cdot {{\text{m}}^{ - 3}}{\text{)}}$
    弹性模量
    /$ {\text{(N}} \cdot {{\text{m}}^{ - 2}}{\text{)}} $
    刚度比 摩擦
    系数
    密度/
    ${\text{(kg}} \cdot {{\text{m}}^{ - 3}}{\text{)}}$
    黏滞系数/
    (Pa·s)
    2500 5×108 1.5 0.8 1000 1×10−3
    下载: 导出CSV

    表 2  三种应力水平下峰值应力误差平均值与内摩擦角误差

    Table 2.  Average value of peak stress error and internal friction angle error under three stress levels

    参数 计算公式 B1数值模拟与A1
    试验结果比对/%
    B6数值模拟与A6
    试验比对结果/%
    应力误差
    平均值
    $ \dfrac{{\dfrac{{\Delta {\sigma _{100}}}}{{{\sigma _{100}}}} + \dfrac{{\Delta {\sigma _{200}}}}{{{\sigma _{200}}}} + \dfrac{{\Delta {\sigma _{300}}}}{{{\sigma _{300}}}}}}{3} $ 5.6 −9.6
    内摩擦角
    误差
    $ \dfrac{\Delta \varphi }{{\varphi }_{试验}} $ 8.6 −1.3
    下载: 导出CSV

    表 3  渗透试验与数值模拟得到的渗透系数

    Table 3.  Comparison of hydraulic conductivity measured by test and simulation

    试验和
    模拟类型
    试验次数 常水头试验结果/(cm·s−1 数值模拟
    结果/(cm·s−1
    试验值 平均值
    A6与B6 第1次 0.0557 0.0562 0.0529
    第2次 0.0627
    第3次 0.0501
    A1与B1 第1次 0.0112 0.0107 0.0083
    第2次 0.0100
    第3次 0.0110
    下载: 导出CSV

    表 4  数值模型粒径组成

    Table 4.  Particle size composition in the numerical model

    级配编号 级配数量/种 d50/mm Cu $\dfrac{{{D_{15}}}}{{{d_{85}}}}$ 颗粒图像 级配编号 级配数量/种 d50/mm Cu $\dfrac{{{D_{15}}}}{{{d_{85}}}}$ 颗粒图像
    B1 2 1.28 3.09 2.33 B4 4 7.20 8.57 6.01
    B2 4 2.20 4.39 3.39 B5 4 9.99 11.66 8.71
    B3 4 4.80 7.38 4.03 B6 2 10.42 19.96 16.23
      注:D15表示粗粒组中颗粒的累计粒度分布百分数达到15%时所对应的粒径;d85表示细粒组中颗粒的累计粒度分布百分数达到85%时所对应的粒径。
    下载: 导出CSV

    表 5  土体内部稳定性判定准则及其判定结果和数值模拟结果

    Table 5.  Results of soil internal stability criterion and numerical simulation

    判定准则 结构稳定判定指标 Cu=3.09 Cu=4.39 Cu=7.38 Cu=8.57 Cu=11.66,19.96
    Istonima准则 Cu≤10 S S S S T
    Burenkova法 0.76lgh+1<h<1.86lgh+1 S S U S U
    Wan & Fell法 30/lg(d90/d60)<80
    或15/lg(d20/d15)>22
    S S S S S
    Beriram准则 D15/d85≤6且D15/d15≤9 S S S U U
    Kenndy & Lau法 $ {f}_{4d}\geqslant 2.3{f}_{d},{f}_{d}\leqslant \left\{\begin{array}{l}0.3,C{\mathrm{u}}\leqslant 3\\ 0.2,C{\mathrm{u}} < 3\end{array} \right.$ S S T U U
    数值模拟结果 kki<0 S S T U U
      注:S代表稳定;U代表不稳定;T代表稳定性过渡;fdf4d分别为粒径小于d和小于4d的颗粒质量百分比;h′为d90/d60h″为d90/d15d15表示细粒组中颗粒的累计粒度分布百分数达到15%时所对应的粒径。
    下载: 导出CSV
  • [1]

    李涛,付宏渊,周功科,等. 降雨入渗条件下粗粒土路堤暂态饱和区发展规律及稳定性研究[J]. 水文地质工程地质,2013,40 (5) :74 − 80. [LI Tao,FU Hongyuan,ZHOU Gongke,et al. A study of development law and stability of transient saturated areas of coarsegrained soil embankment under rainfall infiltration[J]. Hydrogeology & Engineering Geology,2013,40(5) :74 − 80. ( in Chinese with English abstract)

    LI Tao, FU Hongyuan, ZHOU Gongke, et al. A study of development law and stability of transient saturated areas of coarsegrained soil embankment under rainfall infiltration[J]. Hydrogeology & Engineering Geology, 2013, 40(5) : 74 − 80. ( in Chinese with English abstract)

    [2]

    梁劲, 王强, 胡新丽, 等. 渗流-应力耦合下侏罗系红砂岩力学及渗透特性试验研究[J]. 地质科技通报,2023,42(1):52 − 61. [LIANG Jin, WANG Qiang, HU Xinli, et al. Experimental study on mechanics and permeability characteristics of Jurassic red sandstone under hydro-mechanical coupling[J]. Bulletin of Geological Science and Technology,2023,42(1):52 − 61. (in Chinese with English abstract)

    LIANG Jin, WANG Qiang, HU Xinli, et al. Experimental study on mechanics and permeability characteristics of Jurassic red sandstone under hydro-mechanical coupling[J]. Bulletin of Geological Science and Technology, 2023, 421): 5261. (in Chinese with English abstract)

    [3]

    WANG Xiukai,TANG Yao,HUANG Bo,et al. Review on numerical simulation of the internal soil erosion mechanisms using the discrete element method[J]. Water,2021,13(2):169. doi: 10.3390/w13020169

    [4]

    XU Y,ZHANG L M. Breaching parameters for earth and rockfill dams[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(12):1957 − 1970. doi: 10.1061/(ASCE)GT.1943-5606.0000162

    [5]

    郭朝旭,崔鹏. 宽级配弱固结土体内细颗粒迁移规律研究评述[J]. 山地学报,2017,35(2):179 − 186. [GUO Chaoxu,CUI Peng. Fine particle migration in wide grading and poorly consolidated soil:An overview[J]. Mountain Research,2017,35(2):179 − 186. (in Chinese with English abstract)

    GUO Chaoxu, CUI Peng. Fine particle migration in wide grading and poorly consolidated soil: An overview[J]. Mountain Research, 2017, 352): 179186. (in Chinese with English abstract)

    [6]

    ISTOMINA V. Filtration stability of soils[J]. Gostroizdat,1957:15.

    [7]

    BURENKOVA V V. Assessment of suffusion in non-cohesive and graded soils[J]. Filters in Geotechnical and Hydraulic Engineering,1993:357 − 360.

    [8]

    WAN C F,FELL R. Assessing the potential of internal instability and suffusion in embankment dams and their foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(3):401 − 407. doi: 10.1061/(ASCE)1090-0241(2008)134:3(401)

    [9]

    KENNEY T C,LAU D. Internal stability of granular filters[J]. Canadian Geotechnical Journal,1985,22(2):215 − 225. doi: 10.1139/t85-029

    [10]

    宋宜祥,管景华,李彦奇,等. 反粒序砂土体内侵蚀及渗流特性变化规律试验研究[J]. 地质科技通报,2023,42(3):16 − 27. [SONG Yixiang, GUAN Jinghua, LI Yanqi, et al. Experimental study on the change law of internal erosion and seepage characteristics of inverse grading sand accumulation[J]. Bulletin of Geological Science and Technology,2023,42(3):16 − 27. (in Chinese with English abstract)

    SONG Yixiang, GUAN Jinghua, LI Yanqi, et al. Experimental study on the change law of internal erosion and seepage characteristics of inverse grading sand accumulation[J]. Bulletin of Geological Science and Technology, 2023, 423): 1627. (in Chinese with English abstract)

    [11]

    刘杰,谢定松. 反滤层设计原理与准则[J]. 岩土工程学报,2017,39(4):609 − 616. [LIU Jie,XIE Dingsong. Design principles and guidelines of filters[J]. Chinese Journal of Geotechnical Engineering,2017,39(4):609 − 616. (in Chinese with English abstract)

    LIU Jie, XIE Dingsong. Design principles and guidelines of filters[J]. Chinese Journal of Geotechnical Engineering, 2017, 394): 609616. (in Chinese with English abstract)

    [12]

    TO H D,SCHEUERMANN A,GALINDO-TORRES S A. Probability of transportation of loose particles in suffusion assessment by self-filtration criteria[J]. Journal of Geotechnical and Geoenvironmental Engineering,2016,142(2):04015078. doi: 10.1061/(ASCE)GT.1943-5606.0001403

    [13]

    MOFFAT R A,FANNIN R J. A large permeameter for study of internal stability in cohesionless soils[J]. Geotechnical Testing Journal,2006,29(4):273 − 279.

    [14]

    KE Lin,TAKAHASHI A. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil[J]. Soils & Foundations,2014,54(4):713 − 730.

    [15]

    CHANG D S,ZHANG L M. Critical hydraulic gradients of internal erosion under complex stress states[J]. Journal of Geotechnical & Geoenvironmental Engineering,2013,139(9):1454 − 1467.

    [16]

    丁瑜,饶云康,倪强,等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质,2019,46(3):108 − 116. [DING Yu,RAO Yunkang,NI Qiang,et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019,46(3):108 − 116. ( in Chinese with English abstract

    DING Yu, RAO Yunkang, NI Qiang, et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2019, 463): 108116. ( in Chinese with English abstract

    [17]

    蔡袁强,张志祥,曹志刚,等. 不均匀级配砂土渗蚀过程的细观数值模拟[J]. 中南大学学报:自然科学版,2019,50(5):1144 − 1153. [CAI Yuanqiang,ZHANG Zhixiang,CAO Zhigang,et al. Mesoscopic numerical simulation for suffusion process of gap-graded sandy soil[J] Journal of Zhongnan University:Natural Sciences,2019,50(5):1144 − 1153. (in Chinese with English abstract)

    CAI Yuanqiang, ZHANG Zhixiang, CAO Zhigang, et al. Mesoscopic numerical simulation for suffusion process of gap-graded sandy soil[J] Journal of Zhongnan University: Natural Sciences, 2019, 50(5): 1144 − 1153. (in Chinese with English abstract)

    [18]

    魏婕,魏玉峰,黄鑫. 颗粒形状对粗粒土剪切变形影响的细观研究[J]. 水文地质工程地质,2021,48(1):114 − 122. [WEI Jie,WEI Yufeng,HUANG Xin. A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2021,48(1):114 − 122. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202002017

    WEI Jie, WEI Yufeng, HUANG Xin. A meso-scale study of the influence of particle shape on shear deformation of coarse-grained soil[J]. Hydrogeology & Engineering Geology, 2021, 481): 114122. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202002017

    [19]

    李伟一,钱建固,尹振宇,等. 间断级配砂土渗流侵蚀现象的计算流体力学-离散元耦合模拟[J]. 岩土力学,2021,42(11):3191 − 3201. [LI Weiyi,QIAN Jiangu,YIN Zhenyu,et al. Simulation of seepage erosion in gap graded sand soil using CFD-DEM[J]. Rock and Soil Mechanics,2021,42(11):3191 − 3201. (in Chinese with English abstract)

    LI Weiyi, QIAN Jiangu, YIN Zhenyu, et al. Simulation of seepage erosion in gap graded sand soil using CFD-DEM[J]. Rock and Soil Mechanics, 2021, 4211): 31913201. (in Chinese with English abstract)

    [20]

    LIU Y,WANG L,HONG Y,et al. A coupled CFD‐DEM investigation of suffusion of gap graded soil:Coupling effect of confining pressure and fines content[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,44(18):2473 − 2500. doi: 10.1002/nag.3151

    [21]

    XIONG H,YIN Z Y,ZHAO J,et al. Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils[J]. Acta Geotechnica,2021,16:399 − 419. doi: 10.1007/s11440-020-01012-9

    [22]

    WANG Xiukai,HUANG Bo,TANG Yao,et al. Microscopic mechanism and analytical modeling of seepage-induced erosion in bimodal soils[J]. Computers and Geotechnics,2022,141:104527. doi: 10.1016/j.compgeo.2021.104527

    [23]

    SHIRE T,O’SULLIVAN C. Micromechanical assessment of an internal stability criterion[J]. Acta Geotechnica,2013,8(1):81 − 90. doi: 10.1007/s11440-012-0176-5

    [24]

    SIBILLE L,MAROT D,SAIL Y. A description of internal erosion by suffusion and induced settlements on cohesionless granular matter[J]. Acta Geotechnica,2015,10(6):735 − 748. doi: 10.1007/s11440-015-0388-6

    [25]

    张升,高峰,陈琪磊,等. 砂-粉土混合料在列车荷载作用下细颗粒迁移机制试验[J]. 岩土力学,2020,41(5):1591 − 1598. [ZHANG Sheng,GAO Feng,CHEN Qilei,et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics,2020,41(5):1591 − 1598. (in Chinese with English abstract)

    ZHANG Sheng, GAO Feng, CHEN Qilei, et al. Experimental study of fine particles migration mechanism of sand-silt mixtures under train load[J]. Rock and Soil Mechanics, 2020, 41(5): 1591 − 1598. (in Chinese with English abstract)

    [26]

    高岳. 化学注浆扩散机理的透明土试验研究[D]. 徐州:中国矿业大学,2016. [GAO Yue. Experimental investigations on the mechanisms of chemical grouting in transparent soil[D]. Xuzhou:China University of Mining and Technology,2016. (in Chinese with English abstract)

    GAO Yue. Experimental investigations on the mechanisms of chemical grouting in transparent soil[D]. Xuzhou: China University of Mining and Technology, 2016. (in Chinese with English abstract)

    [27]

    屈智炯. 对粗粒土渗透变形研究的进展[J]. 水电站设计,2008,24(1):48 − 55. [QU Zhijiong. Progress in study on coarse grained soil seepage deformation[J]. Design of Hydroelectric Power Station,2008,24(1):48 − 55. (in Chinese with English abstract)

    QU Zhijiong. Progress in study on coarse grained soil seepage deformation[J]. Design of Hydroelectric Power Station, 2008, 241): 4855. (in Chinese with English abstract)

    [28]

    CUNDALL P A,STRACK O D L. Discussion:A discrete numerical model for granular assemblies[J]. Géotechnique,1980,30(3):331 − 336.

    [29]

    Itasca Consulting Group Inc. PFC 5.0 Documentation[M]. Minneapolis:Itasca Consulting Group Inc,2016:2363 − 2364.

    [30]

    蒋中明,袁涛,刘德谦,等. 粗粒土渗透变形特性的细观数值试验研究[J]. 岩土工程学报,2018,40(4):752 − 758. [JIANG Zhongming,YUAN Tao,LIU Deqian,et al. Mesoscopic numerical tests on seepage failure characteristics of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering,2018,40(4):752 − 758. (in Chinese with English abstract)

    JIANG Zhongming, YUAN Tao, LIU Deqian, et al. Mesoscopic numerical tests on seepage failure characteristics of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 404): 752758. (in Chinese with English abstract)

    [31]

    刘先珊,刘洋. 考虑流固耦合效应的饱和砂土渗透破坏数值模拟[J]. 兰州大学学报(自然科学版),2013,49(5):633 − 638. [LIU Xianshan,LIU Yang. Numerical simulation of seepage failure of saturated sand with consideration of fluid-solid coupling efect[J]. Journal of Lanzhou University (Natural Sciences),2013,49(5):633 − 638. (in Chinese with English abstract)

    LIU Xianshan, LIU Yang. Numerical simulation of seepage failure of saturated sand with consideration of fluid-solid coupling efect[J]. Journal of Lanzhou University (Natural Sciences), 2013, 495): 633638. (in Chinese with English abstract)

    [32]

    SKEMPTON A W,BROGAN J M. Discussion:Experiments on piping in sandy gravels[J]. Géotechnique,1995,45(3):565 − 567.

    [33]

    ZHOU Wei,MA Qirui,MA Gang,et al. Microscopic investigation of internal erosion in binary mixtures via the coupled LBM-DEM method[J]. Powder Technology,2020,376:31 − 41. doi: 10.1016/j.powtec.2020.07.099

  • 加载中

(18)

(5)

计量
  • 文章访问数:  1175
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2023-01-18
修回日期:  2023-03-19
刊出日期:  2024-01-15

目录