碳酸盐岩裂隙溶蚀扩展试验与模拟研究

武亚遵, 于江浩, 林云, 金毅, 刘源, 王雪奇. 碳酸盐岩裂隙溶蚀扩展试验与模拟研究[J]. 水文地质工程地质, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064
引用本文: 武亚遵, 于江浩, 林云, 金毅, 刘源, 王雪奇. 碳酸盐岩裂隙溶蚀扩展试验与模拟研究[J]. 水文地质工程地质, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064
WU Yazun, YU Jianghao, LIN Yun, JIN Yi, LIU Yuan, WANG Xueqi. Experiment and simulation study on dissolution widening of carbonate rock fracture[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064
Citation: WU Yazun, YU Jianghao, LIN Yun, JIN Yi, LIU Yuan, WANG Xueqi. Experiment and simulation study on dissolution widening of carbonate rock fracture[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 41-46. doi: 10.16030/j.cnki.issn.1000-3665.202302064

碳酸盐岩裂隙溶蚀扩展试验与模拟研究

  • 基金项目: 国家自然科学基金项目(41502224;42271041);河南省高等学校青年骨干教师培养计划(2019GGJS055);河南省高等学校重点科研项目(21A170011)
详细信息
    作者简介: 武亚遵(1981—), 男,博士,副教授,主要从事水文地质工程地质教学研究。E-mail:wuyazun@163.com
    通讯作者: 金毅(1979—), 男,博士,教授,主要从事流体力学、数学地质教学研究。E-mail:jinyi2005@hpu.edu.cn
  • 中图分类号: P642.25

Experiment and simulation study on dissolution widening of carbonate rock fracture

More Information
  • 研究表明碳酸盐岩的溶蚀过程可用溶解速率方程进行表征,但表征的形式存在较大差别,主要体现在远离平衡的欠饱和态下。为进一步确定碳酸盐岩在欠饱和态下的溶解特征及溶蚀速率的表征形式,首先开展了碳酸盐岩裂隙溶蚀试验研究,探讨了CO2及溶液初始Ca2+浓度对溶蚀过程的影响,并基于试验结果构建了欠饱和态下的溶解速率方程;而后采用碳酸盐岩裂隙渗流-溶解耦合模型,通过数值模拟对量化模型的参数进行率定和检验。结果表明:(1)CO2的参与加快了碳酸盐岩的溶蚀扩展,溶液初始Ca2+浓度越高,对碳酸盐岩的溶解抑制程度就越高;(2)CO2作用下碳酸盐岩裂隙溶蚀扩展的平均溶蚀速率增加了1.82~2.29倍;(3)溶液不同初始Ca2+浓度在同等区间流量条件下,蒸馏水为溶蚀溶液的样品中Ca2+浓度差值下降了0.0915 mmol/L,溶液初始Ca2+浓度为0.352,0.476,0.581 mmol/L的溶蚀溶液中,Ca2+浓度差值分别下降了0.0742,0.0536,0.0474 mmol/L;(4)在高度欠饱和状态下溶解动力学由线性速率定律控制,随着溶液中Ca2+浓度的升高,溶解动力学将变为非线性关系,此时Ca2+浓度为0.4倍的平衡时Ca2+浓度。研究结果可为定量评价岩溶发育演化提供数据支撑。

  • 加载中
  • 图 1  碳酸盐岩单裂隙溶蚀试验装置示意图

    Figure 1. 

    图 2  碳酸盐岩受CO2影响下的溶蚀特征

    Figure 2. 

    图 3  不同初始Ca2+浓度下的碳酸盐岩溶蚀特征

    Figure 3. 

    图 4  溶蚀试验Ca2+浓度与溶蚀速率关系

    Figure 4. 

    图 5  数值模拟与室内试验Ca2+浓度-溶蚀速率曲线对比(J=0.031)

    Figure 5. 

  • [1]

    袁道先,章程. 岩溶动力学的理论探索与实践[J]. 地球学报,2008,29(3):355 − 365. [YUAN Daoxian,ZHANG Cheng. Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica,2008,29(3):355 − 365. (in Chinese with English abstract)

    YUAN Daoxian, ZHANG Cheng. Karst dynamics theory in China and its practice[J]. Acta Geoscientica Sinica, 2008, 293): 355365. (in Chinese with English abstract)

    [2]

    李强. 流域尺度岩溶碳循环过程——“岩溶作用与碳中和”专栏特邀主编寄语[J]. 地球学报,2022,43(4):421 − 424. [LI Qiang. Karst carbon cycle process at watershed scale:Guest editor’s preface to “karst process and carbon neutralization”[J]. Acta Geoscientica Sinica,2022,43(4):421 − 424. (in Chinese with English abstract)

    LI Qiang. Karst carbon cycle process at watershed scale: Guest editor’s preface to “karst process and carbon neutralization”[J]. Acta Geoscientica Sinica, 2022, 434): 421424. (in Chinese with English abstract)

    [3]

    唐健生,夏日元,邹胜章,等. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. 吉林大学学报(地球科学版),2005,35(4):481 − 486. [TANG Jiansheng,XIA Riyuan,ZOU Shengzhang,et al. Characteristics of karst medium system and its hydrogeologic effect in the South Tianshan,Xinjiang[J]. Journal of Jilin University (Earth Science Edition),2005,35(4):481 − 486. (in Chinese with English abstract)

    TANG Jiansheng, XIA Riyuan, ZOU Shengzhang, et al. Characteristics of karst medium system and its hydrogeologic effect in the South Tianshan, Xinjiang[J]. Journal of Jilin University (Earth Science Edition), 2005, 354): 481486. (in Chinese with English abstract)

    [4]

    郭静芸,毕鑫涛,方然可,等. 可溶岩化学溶蚀试验方法研究综述[J]. 水文地质工程地质,2020,47(4):24 − 34. [GUO Jingyun,BI Xintao,FANG Ranke,et al. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology,2020,47(4):24 − 34. (in Chinese with English abstract)

    GUO Jingyun, BI Xintao, FANG Ranke, et al. Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 474): 2434. (in Chinese with English abstract)

    [5]

    林云,任华鑫,武亚遵,等. 不同赋存环境下碳酸盐岩溶蚀过程试验模拟研究[J]. 水文地质工程地质,2021,48(2):15 − 26. [LIN Yun,REN Huaxin,WU Yazun,et al. Experimental simulation of the carbonate dissolution process under different occurrence conditions[J]. Hydrogeology & Engineering Geology,2021,48(2):15 − 26. (in Chinese with English abstract)

    LIN Yun, REN Huaxin, WU Yazun, et al. Experimental simulation of the carbonate dissolution process under different occurrence conditions[J]. Hydrogeology & Engineering Geology, 2021, 482): 1526. (in Chinese with English abstract)

    [6]

    WHITE W B. The role of solution kinetics in the development of karst aquifers[J]. Karst hydrogeology International Association of Hydrogeologists,12th Memoirs,2011:503 − 517.

    [7]

    刘再华,DREYBRODT W. 流动CO2-H2O系统中方解石溶解动力学机制——扩散边界层效应和CO2转换控制[J]. 地质学报,1998,72(4):340 − 348. [LIU Zaihua,DREYBRODT W. Dissolution kinetics of calcite in CO2-H2O solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction CO2+H2O H++HCO3[J]. Acta Geologica Sinica,1998,72(4):340 − 348. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1998.04.005

    LIU Zaihua, DREYBRODT W. Dissolution kinetics of calcite in CO2-H2O solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction CO2+H2O H++HCO3[J]. Acta Geologica Sinica, 1998, 724): 340348. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.1998.04.005

    [8]

    刘再华,DREYBRODT W. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学,2006,31(3):411 − 416. [LIU Zaihua,DREYBRODT W,LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science,2006,31(3):411 − 416. (in Chinese with English abstract)

    LIU Zaihua, DREYBRODT W, LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science, 2006, 313): 411416. (in Chinese with English abstract)

    [9]

    BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas:1. Open system[J]. Chemical Geology,1985,48(1/2/3/4):189 − 211. doi: 10.1016/0009-2541(85)90046-4

    [10]

    BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas:2. Closed system[J]. Chemical Geology,1985,53(1/2/3/4):109 − 124.

    [11]

    PLUMMER L N,WIGLEY T M L,PARKHURST D L. The kinetics of calcite dissolution in CO2-water systems at 5 degrees to 60 degrees C and 0.0 to 1.0 atm CO2[J]. American Journal of Science,1978,278(2):179 − 216. doi: 10.2475/ajs.278.2.179

    [12]

    刘再华,DREYBRODT W. 不同CO2分压条件下的白云岩溶解动力学机理[J]. 中国科学 (B辑 化学),2001,31(4):377 − 384. [LIU Zaihua,DREYBRODT W. Kinetics mechanism of dolomite dissolution under different CO2 partial pressures[J]. Science in China,SerB,2001,31(4):377 − 384. (in Chinese)

    LIU Zaihua, DREYBRODT W. Kinetics mechanism of dolomite dissolution under different CO2 partial pressures[J]. Science in China, SerB, 2001, 314): 377384. (in Chinese)

    [13]

    KAUFMANN G,DREYBRODT W. Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at high undersaturation[J]. Geochimica et Cosmochimica Acta,2007,71(6):1398 − 1410. doi: 10.1016/j.gca.2006.10.024

    [14]

    BUHMANN D,DREYBRODT W. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas[J]. Chemical Geology,1985,48(1/2/3/4):189 − 211.

    [15]

    KAUFMANN G,BRAUN J. Karst aquifer evolution in fractured rocks[J]. Water Resources Research,1999,35(11):3223 − 3238. doi: 10.1029/1999WR900169

    [16]

    DREYBRODT W. Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models[J]. Water Resources Research,1996,32(9):2923 − 2935. doi: 10.1029/96WR01332

    [17]

    DREYBRODT W,GABROVŠEK F. Basic processes and mechanisms governing the evolution of karst[J]. Speleogenesis and Evolution of Karst Aquifers,2003,1(1):1 − 26.

    [18]

    PALMER A N. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin,1991,103(1):1 − 21. doi: 10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2

    [19]

    BERNER R A,MORSE J W. Dissolution kinetics of calcium carbonate in sea water; IV,Theory of calcite dissolution[J]. American Journal of Science,1974,274(2):108 − 134. doi: 10.2475/ajs.274.2.108

    [20]

    PLUMMER L N,WIGLEY T M L. The dissolution of calcite in CO2-saturated solutions at 25 °C and 1 atmosphere total pressure[J]. Geochimica et Cosmochimica Acta,1976,40(2):191 − 202. doi: 10.1016/0016-7037(76)90176-9

    [21]

    SVENSSON U,DREYBRODT W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium[J]. Chemical Geology,1992,100(1/2):129 − 145.

    [22]

    GABROVŠEK F,DREYBRODT W. Role of mixing corrosion in calcite-aggressive H2O-CO2-CaCO3 solutions in the early evolution of karst Aquifers in limestone[J]. Water Resources Research,2000,36(5):1179 − 1188. doi: 10.1029/1999WR900337

    [23]

    KAUFMANN G. Modelling unsaturated flow in an evolving karst aquifer[J]. Journal of Hydrology,2003,276(1/2/3/4):53 − 70.

    [24]

    BRANTLEY S L,KUBICKI J D,WHITE A F. Kinetics of mineral dissolution[J]. Springer New York,2008,10(5):151 − 210.

    [25]

    MYERS T G. Modeling laminar sheet flow over rough surfaces[J]. Water Resources Research,2002,38(11):1 − 12.

    [26]

    刘再华,DREYBRODT W,韩军,等. CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J]. 中国岩溶,2005,24(1):1 − 14. [LIU Zaihua,DREYBRODT W,HAN Jun,et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica,2005,24(1):1 − 14. (in Chinese with English abstract)

    LIU Zaihua, DREYBRODT W, HAN Jun, et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005, 241): 114. (in Chinese with English abstract)

    [27]

    许模,毛邦燕,张广泽,等. 青藏高原东缘梯度带大气CO2含量与岩溶发育相关性初探[J]. 成都理工大学学报(自然科学版),2020,47(6):724 − 732. [XU Mo,MAO Bangyan,ZHANG Guangze,et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet Plateau,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2020,47(6):724 − 732. (in Chinese with English abstract)

    XU Mo, MAO Bangyan, ZHANG Guangze, et al. A preliminary study on correlation of atmospheric CO2 concentration and karst development in the eastern margin of Qinghai-Tibet Plateau, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 476): 724732. (in Chinese with English abstract)

    [28]

    高阳,邱振忠,于青春. 层流—紊流共存流场中岩溶裂隙网络演化过程的数值模拟方法[J]. 中国岩溶,2019,38(6):831 − 838. [GAO Yang,QIU Zhenzhong,YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica,2019,38(6):831 − 838. (in Chinese with English abstract)

    GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulation method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica, 2019, 386): 831838. (in Chinese with English abstract)

    [29]

    武亚遵,岑雷,林云,等. 河间隐伏型岩溶裂隙含水系统演化的数值模拟[J]. 中国岩溶,2019,38(6):839 − 845. [WU Yazun,CEN Lei,LIN Yun,et al. Numerical simulation for the evolution of covered karst fissure system between rivers[J]. Carsologica Sinica,2019,38(6):839 − 845. (in Chinese with English abstract)

    WU Yazun, CEN Lei, LIN Yun, et al. Numerical simulation for the evolution of covered karst fissure system between rivers[J]. Carsologica Sinica, 2019, 386): 839845. (in Chinese with English abstract)

  • 加载中

(5)

计量
  • 文章访问数:  773
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2023-02-27
修回日期:  2023-05-16
刊出日期:  2024-01-15

目录