Pollution characteristics, migration and transformation of hexavalent chromium in groundwater of a chromium slag
-
摘要:
我国铬渣堆历史存量较大,渣堆渗滤液中的六价铬[Cr(Ⅵ)]毒性大、迁移性强。为探究污染源特征、场地水文地质条件和水文地球化学过程综合作用下Cr(Ⅵ)在地下水中的迁移转化规律,文章以某铬污染场地为例,通过水样采集与分析,利用克里格插值、因子分析、水化学计算、Piper三线图和离子比等方法查明地下水中Cr(Ⅵ)的空间分布与水化学特征,识别水体中Cr(Ⅵ)的主要赋存形式,并探讨影响Cr(Ⅵ)在地下水中迁移转化的主控因素。结果表明:(1)场地40 m以浅的 2 个含水层均受到了Cr(Ⅵ)污染,污染范围和程度差异显著。(2)Cr(Ⅵ)在地下水中主要以CrO2−4和HCrO−4 2 种形式存在,Cr2O2−7浓度极低,高浓度Cr(Ⅵ)水点的阴离子以HCO−3和SO2−4为主,阳离子以Na+和Ca2+为主。(3)降水淋滤和渗漏导致含有大量Na+、SO2−4和Cr(Ⅵ)的渗滤液进入地下水,使地下水pH值升高;高浓度的HCO−3和弱氧化环境下铁氧化物的溶解可以促进Cr(Ⅵ)在地下水中的迁移;锰氧化物和有机质通过氧化还原反应改变地下水中Cr(Ⅵ)浓度;浅层地下水的蒸发浓缩作用加剧Cr(Ⅵ)在地下水中的富集。研究成果可为铬渣类污染场地的风险管控与后期修复提供有力支撑。
Abstract:The historical stockpile of chromium slag in China is large, and the hexavalent chromium in slag leachate is highly toxic and migratory. In order to investigate the migration and transformation pattern of Cr(Ⅵ) in groundwater under the combined effect of pollution source, site hydrogeological condition and hydrogeochemical process, a hexavalent chromium contaminated site was taken as an example in this study, the spatial distribution, hydrogeochemical characteristic, occurrence form and proportion of Cr(Ⅵ) in groundwater, and the main factors affecting migration and transformation of Cr(Ⅵ) are analyzed by sampling and testing groundwater samples, and the combination using of methods such as Kriging interpolation, factor analysis, hydrogeochemical calculation, Piper diagram and ion ratio. The results show that (1) the two aquifers below ground surface 40 m are polluted by Cr(Ⅵ), but the size and degree are different obviously. (2) The main forms of Cr(Ⅵ) in groundwater are CrO2−4 and HCrO−4, Cr2O2−7 content is extremely low, and the anions of samples with high Cr(Ⅵ) concentration are mainly HCO−3 and SO2−4, the cations are mainly Na+ and Ca2+. (3) Precipitation leaching and seepage result in the leachate containing large amounts of Na+, SO2−4 and Cr(Ⅵ) entering groundwater. The increasing pH, high concentrations of HCO−3 and dissolution of iron oxides under low oxidizing environment in groundwater can facilitate the migration of Cr(Ⅵ). Manganese oxides and organic matter are able to change Cr(Ⅵ) content through redox reaction. Evaporation also plays an important role on the enrichment of Cr(Ⅵ) in groundwater. The results of this research can provide strong support for risk management and post remediation of chromium slag contaminated sites.
-
铬(Cr)是重要的战略金属资源,铬盐作为重要的化工原料,在电镀、印染、医药、合成橡胶等产业中具有广泛应用[1]。我国自1958年建成第一条铬盐生产线至今,先后有70余家企业生产工业铬盐[2]。铬盐生产过程中伴随大量铬渣的产生,根据中国无机盐工业协会的统计,历史上我国铬渣堆存量累计可达6.0×106 t,主要分布于吉林、新疆、湖南、 河南、内蒙古、山东、湖北、重庆和青海等地区[3 − 5]。铬渣渗滤液中的Cr主要以三价铬[Cr(Ⅲ)]和六价铬[Cr(Ⅵ)] 2种形式存在[6 − 7],Cr(Ⅲ)通常以阳离子形式存在,极易受到土壤胶体的吸附或与之发生沉淀反应,活动性较差[8],而Cr(Ⅵ)一般以阴离子形式存在,土壤胶体对Cr(Ⅵ)的吸附较弱,Cr(Ⅵ)在土壤中迁移性强,对生态环境造成严重威胁[9]。
近年来,众多学者对Cr(Ⅵ)在土壤中的迁移转化影响因素进行了大量研究。天然条件下,土壤pH值可改变Cr的化学形态和矿物表面的电荷数量从而影响Cr的吸附能力[10 − 11];氧化还原电位对不同赋存状态下重金属的释放有较大影响 [12 − 13];黏土矿物通过吸附固持作用影响Cr(Ⅵ)在土壤中的迁移转化,且吸附强度为高岭土>伊利石>蒙脱石[14 − 15];有机质通过氧化还原作用改变Cr的结合态和化合态而影响其迁移转化[16 − 17]。在地下水方面,已有成果主要研究对流、弥散和吸附作用对Cr(Ⅵ)迁移扩散的影响[18],利用室内、外试验获取Cr(Ⅵ)在含水层中的水动力和溶质运移参数[19 − 20],并开展数值模拟进行预测[21 − 22]。综合考虑污染源特征、场地水文地质条件和其他水文地球化学过程对Cr(Ⅵ)迁移转化影响的研究较少。此外,受铬盐生产工艺、土地利用类型、地下水灌溉等因素的影响,不同铬渣场地地下水中Cr(Ⅵ)分布特征、形态以及影响Cr(Ⅵ)迁移转化的主控因素也有所差别,应综合考虑。
因此,本文以某铬渣堆污染场地为例,通过水样采集与测试,分析地下水中Cr(Ⅵ)的空间分布范围及水化学特征,识别Cr(Ⅵ)在地下水中的主要存在形式及其占比,探讨污染源、场地水文地质条件及水文地球化学过程综合作用下Cr(Ⅵ)在地下水中迁移转化的主控因素,以期为该类污染场地的精准化管控与后期修复提供科学依据与技术支持。
1. 研究区概况
污染场地位于河南省北部某市郊区,原为一乡办铬盐厂,采用有钙焙烧法生产铬盐,于20世纪90年代初期关停[23]。铬渣堆位于生产车间北部,占地约6000 m2(图1),停产时铬渣堆残量约2×104 t[24]。由于铬渣长期露天堆放且无防渗处理,渣堆附近土壤污染深度达10 m,Cr(Ⅵ)浓度(以质量比形式计)为390.4 mg/kg,对周边土壤及地下水造成了严重污染[25 − 26]。
研究区典型水文地质剖面(图2)表明,埋深40 m以浅的地下水可划分为2个含水层。第Ⅰ含水层顶板埋深8~10 m,厚度3~15 m,岩性以中细砂为主,局部为中粗砂,地下水水位埋深1.6~3.0 m,呈NW—SE向流动;第Ⅱ含水层顶板埋深20~28 m,厚度5~10 m,岩性以细砂为主,与第Ⅰ含水层流向一致,且2个含水层之间无水头差。区内多年平均降水量为586.3 mm,水面蒸发量1772.6 mm,地下水主要接受大气降水和侧向径流补给,以侧向径流、蒸发和农业开采形式排泄[27 − 28]。
2. 材料与方法
2.1 样品采集与保存
2020年4月在研究区共采集地下水样33组(第Ⅰ含水层浅层采样点S1—S20,共20组,第Ⅱ含水层深层采样点D1—D13,共13组),采样点位置见图1。水样采集前开展低流速洗井(型号Solinst408),洗井水量不小于井内水体积3倍。采用便携式多参数水质分析仪(哈希,型号HQ40d)测定地下水pH、溶解氧(DO)、电导率(EC)和氧化还原电位(ORP),DO、EC和ORP连续3次测量偏差制在±10%,pH偏差控制在±0.1个单位。
采样规格为1000 ml聚乙烯瓶,采集水样2瓶,其中1瓶用于测定金属离子,样品加入1∶1 HNO3酸化至pH<2。所有样品均用0.45μm滤膜过滤,装满采样瓶,避免留有气泡,并低温保存。
2.2 样品测试与分析
水样分析由谱尼测试集团股份有限公司依据《地下水质量标准》(GB/T 14848—2017)测定各组分的质量浓度(ρ) [29],其中K+、Na+、Ca2+、Mg2+、总Fe和总Mn用电感耦合等离子体发射光谱仪测定,
HCO−3 、CO2−3 、SO2−4 和Cl−采用容量法和离子色谱法测定,溶解性总固体(TDS)采用称量法测定,总有机碳(TOC)采用酸性高锰酸盐法测定,Cr(Ⅵ)采用二苯碳酰二肼分光光度法测定,总Cr采用火焰原子吸收法测定。阴、阳离子电荷平衡计算误差小于5%,满足分析要求。2.3 数据处理与分析
采用Microsoft Excel 2010进行数据整理与统计,基于 SPSS22.0 统计软件开展因子分析,Cr(Ⅵ)质量浓度等值线采用Sufer13.0克里格插值法生成,利用The Geochemist’s Workbench(GWB)水化学软件计算Cr与地下水Ca2+、Mg2+等主要离子共存时Cr(Ⅵ)的主要形态,Piper三线图由AqQA水化学软件绘制,其他离子比图件由Grapher14.0软件完成。
3. 结果
3.1 地下水组分与Cr(Ⅵ)质量浓度
研究区地下水化学性质与特征污染物质量浓度统计结果见表1。第Ⅰ含水层地下水中Cr(Ⅵ)质量浓度为ND~82.1 mg/L,第Ⅱ含水层地下水中Cr(Ⅵ)质量浓度为ND~21.5 mg/L,以《地下水质量标准》(GB/T 14848—2017)[29]规定的Ⅲ类水Cr(Ⅵ)质量浓度限值0.05 mg/L为标准,超标倍数高达1642倍和430倍,2个含水层均受到不同程度污染。此外,第Ⅰ、Ⅱ含水层中微量组分(Fe、Mn和TOC)质量浓度变异系数(Cv)分别为125.4%~227.8%、178.4%~181.7%和45.5%~88.8%,空间变异较大,初步判断与地下水受Cr(Ⅵ)污染相关;宏量组分(K+、Na+、Ca2+、Mg2+、
SO2−4 、Cl−、HCO−3 和TDS)质量浓度Cv介于15.6%~79.7%,空间变异中等;现场参数(pH和ORP)Cv分别为2.9%~3.5%和31.6%~40.7%,空间变异较小,这与地下水有较强的缓冲能力有关。表 1. 研究区地下水化学性质与特征污染物质量浓度统计表Table 1. Statistical table of groundwater components and characteristic pollutants mass concentration层
位统计值 pH ORP TDS TOC 组分质量浓度 K+ Na+ Ca2+ Mg2+ SO2−4 Cl− HCO−3 Fe Mn Cr Cr6+ 第
Ⅰ
含
水
层最小值 6.89 47.1 708 1.0 0.22 64.5 90.6 65.0 90.9 56.1 418 ND ND ND ND 最大值 7.73 165.5 1620 9.9 3.68 288.0 222.0 138.0 440.0 242.0 817 18.1 2.89 82.1 82.1 平均值 7.27 97.6 1191 2.2 0.89 135.2 140.7 99.2 210.8 156.5 564 1.7 0.44 4.0 4.0 变异系数 0.03 0.32 0.22 0.89 0.80 0.36 0.25 0.22 0.44 0.34 0.23 2.28 1.78 5.75 5.75 第
Ⅱ
含
水
层最小值 7.24 37.2 607 0.6 0.22 41.5 37.7 23.9 60.6 37.8 393 ND ND ND ND 最大值 8.08 158.7 1260 2.4 1.51 189.0 154.0 103.0 198.0 211.0 656 2.8 0.10 21.7 21.5 平均值 7.64 90.3 854 1.3 0.66 118.0 89.5 63.2 115.4 93.1 513 0.6 0.02 1.9 1.9 变异系数 0.04 0.41 0.26 0.46 0.57 0.39 0.39 0.34 0.41 0.59 0.16 1.25 1.82 3.09 3.11 注:表中变异系数和pH为无量纲;ORP单位为mV;其余指标单位为mg/L。 3.2 因子分析
研究区水化学组分Kaiser-Meyer-Olkin(KMO)检验统计量值为0.65,Bartlett球型检验统计量Sig=0(<0.05),满足因子分析适用条件[30 − 31]。旋转因子载荷矩阵(表2)结果表明:因子分析初始特征值共有15个,经过主成分分析提取5个公共因子,累计贡献率为84.01%,能够较好地代表原变量。
表 2. 研究区旋转因子载荷矩阵Table 2. Matrix of rotated factor loadings组分 主因子 F1 F2 F3 F4 F5 pH 0.159 −0.108 0.694 −0.462 0.036 ORP 0.430 0.314 −0.003 0.693 −0.097 K+ 0.104 0.324 0.020 −0.121 0.189 Na+ 0.590 0.292 0.544 −0.065 0.344 Ca2+ 0.201 0.881 0.049 0.248 −0.080 Mg2+ 0.181 0.925 −0.058 0.182 −0.082 SO2−4 0.700 0.597 0.019 0.052 0.189 Cl− −0.071 0.915 0.168 −0.084 −0.146 HCO−3 0.020 0.166 0.446 0.519 0.568 TDS 0.415 0.846 0.177 −0.024 0.143 Fe −0.037 −0.026 0.013 0.981 0.023 Mn −0.129 0.347 0.166 0.703 0.294 TOC 0.102 0.193 0.204 0.925 0.093 总Cr 0.980 0.128 0.030 −0.075 −0.023 Cr(Ⅵ) 0.981 0.128 0.030 −0.074 −0.023 特征值 5.98 5.50 3.39 2.17 1.43 贡献率% 27.18 24.99 15.42 9.91 6.51 累计贡献率% 27.18 52.17 67.59 77.50 84.01 F1因子贡献率为27.18%,因子载荷较高的组分为Na+、
SO2−4 、总Cr和Cr(Ⅵ),可判断为铬渣在降水淋滤与渗漏作用下对地下水造成的Cr污染;F2因子贡献率为24.99%,因子载荷较高的组分为Ca2+、Mg2+、Cl−和TDS,可表征矿物溶解与蒸发浓缩作用对地下水组分的影响;F3因子贡献率为15.42%,因子载荷较高的组分为pH,可说明地下水pH值对地下水组分的影响;F4因子贡献率为9.91%,因子载荷较高的组分为Fe、Mn、TOC和ORP,可说明铁氧化物、锰氧化物、有机质和地下水的氧化还原环境对各组分的影响;F5因子贡献率为6.51%,HCO−3 因子载荷较高,判断HCO−3 可通过竞争性吸附等作用而影响其他组分的分布。4. 讨论
4.1 Cr(Ⅵ)分布特征
研究区地下水Cr(Ⅵ)质量浓度等值线(图3)表明:2个含水层形成的Cr(Ⅵ)污染羽沿地下水流向呈NW—SE分布;第Ⅰ含水层污染羽中心位于铬渣堆附近,最大值82.1 mg/L,第Ⅱ含水层污染羽中心位于铬渣堆下游约400 m处的D12点附近,最大值21.5 mg/L;以0.05 mg/L为限值,第Ⅰ含水层形成一个南北长800 m、东西宽300 m的Cr(Ⅵ)污染羽,第Ⅱ含水层污染羽南北长550 m、东西宽350 m。2个污染羽中心异位的原因在于第Ⅰ含水层受铬渣堆影响,第Ⅱ含水层受农业混合开采影响,在D12点附近上、下含水层贯通而形成Cr(Ⅵ)迁移的优势通道。
4.2 Cr(Ⅵ)形态特征
Cr(Ⅵ)在地下水中主要以
HCrO−4 、CrO2−4 和Cr2O2−7 形式存在[6]。为进一步确定研究区地下水中不同形式Cr(Ⅵ)的占比,采用GWB软件SpecE8模块计算,该模块的优点在于可同时考虑地下水pH、ORP以及主要离子Ca2+、Mg2+、K+、Na+、HCO−3 、SO2−4 、Cl−共存时Cr(Ⅵ)的存在形式及物质的量 [32]。计算结果表明:2个含水层中Cr(Ⅵ)主要以CrO2−4 、HCrO−4 形式存在,CrO2−4 占比大于80%,HCrO−4 占比不足20%,Cr2O2−7 占比极低(图4)。4.3 水化学特征
由研究区地下水Piper三线图(图5)可知:第Ⅰ含水层地下水点阳离子以Na+、Ca2+和Mg2+为主,阴离子以
HCO−3 和SO2−4 为主,水化学类型主要表现为HCO3—Ca•Mg型和HCO3•SO4—Na•Ca型;第Ⅱ含水层地下水点阳离子也以Na+、Ca2+和Mg2+为主,但阴离子几乎全以HCO−3 为主,水化学类型主要表现为HCO3—Na•Ca型。整体而言,Cr(Ⅵ)<0.05 mg/L的水点阴离子以HCO−3 为主,阳离子以Ca+为主;Cr(Ⅵ)≥0.05 mg/L的水点阴离子以HCO−3 和SO2−4 为主,阳离子以Na+和Ca2+为主,水化学类型为HCO3•SO4—Na•Ca型。4.4 Cr(Ⅵ)迁移转化影响因素
4.4.1 铬盐生产工艺与污染源分布
Na+、
SO2−4 与总Cr、Cr(Ⅵ)特征污染物处于同一因子F1中,表明Cr与Na+、SO2−4 物质来源相同。原铬盐厂主要采用有钙焙烧法生产红矾钠(Na2Cr2O7)等铬盐[24],且生产过程中多采用H2SO4、NaHSO4作为反应物,其化学反应式可表示为[33]:2Na2CrO4+H2SO4=Na2Cr2O7+Na2SO4+H2O (1) 2Na2CrO4+2NaHSO4=Na2Cr2O7+2Na2SO4+H2O (2) 铬渣长期露天堆放,且无防渗处理,在降水淋滤作用下以垂向渗漏为主,含大量Na+、
SO2−4 与Cr(Ⅵ)的渗滤液透过包气带进入地下水,在对流、弥散作用下向下游迁移扩散。结合图3可知,第Ⅰ含水层污染羽中心位于铬渣堆附近,表明铬渣渗滤液垂向迁移对第Ⅰ含水层的污染;第Ⅱ含水层污染羽中心位于铬渣堆下游,说明Cr(Ⅵ)在铬渣堆处未垂直穿透上部隔水层,而是水平迁移扩散至下游,由于农灌井导致上下含水层贯通而引起的。此外,研究区高质量浓度Cr(Ⅵ)的水点阴离子以SO2−4 为主,阳离子以Na+为主,也充分说明了富含Na+和SO2−4 的铬渣渗滤液对地下水组分的影响。4.4.2 矿物溶解与蒸发浓缩
F2因子表明水化学作用对地下水组分的影响。Gibbs图(图6)可以通过天然水体的ρ(TDS)与ρ(Na+)/[ρ(Na+)+ρ(Ca2+)]、ρ(Cl−)/[ρ(Cl−)+ρ(
HCO−3 )]的比值关系来判断水化学形成演化过程[34 − 35]。从图6可以看出,各水点处于岩石风化端元与蒸发浓缩端元之间,同第Ⅱ含水层相比,第Ⅰ含水层水点向蒸发浓缩端元偏移显著。结合场地水文地质条件可知,区内地下水水位埋深1.6~3.0 m,前期氘、氧同位素结果表明区内浅层水蒸发作用强烈[36],矿物风化溶解与蒸发浓缩作用导致地下水中Ca2+、Mg2+、Cl−、TDS质量浓度不断升高,并加剧了Cr(Ⅵ)在地下水中的富集,且第Ⅱ含水层比第Ⅰ含水层的作用强度要大。4.4.3 地下水pH值
F3因子说明了pH值对地下水组分的影响。研究区地下水pH值处于6.89~8.08,地下水pH-Cr(Ⅵ)质量浓度关系表明随着pH值增大Cr(Ⅵ)质量浓度呈现增大趋势(图7、图8)。原因在于随着地下水pH值升高,含水层中黏土矿物及金属氧化物表面的负电荷增多,正电荷减少,含水介质吸附负离子能力减弱,而Cr(Ⅵ)以络阴离子形式存在,使得被吸附的Cr(Ⅵ)从沉积物表面解析出来,引起地下水Cr(Ⅵ)浓度升高。这与文献[13]研究土壤pH值对Cr(Ⅵ)迁移转化影响的结论相一致。
此外,pH值也控制着Cr(Ⅵ)的不同形态[10 − 11]。从图8可以看出,随着pH值升高,第Ⅰ、Ⅱ含水层地下水中的
HCrO−4 占比下降,CrO2−4 占比升高,当pH值大于7.5时,HCrO−4 占比不足10%,CrO2−4 成为最主要的存在形式,在Cr(Ⅵ)摩尔数相同的条件下,CrO2−4 负电荷带电量为HCrO−4 的2倍,CrO2−4 更不易被含水介质吸附而滞留在地下水中,从而导致Cr(Ⅵ)浓度增大。可见,调控地下水pH值是铬渣污染场地风险管控的有效措施之一。4.4.4 地下水沉积环境
F4因子可以归纳为原生沉积环境对地下水组分的影响,主要影响因素为铁氧化物、锰氧化物和有机质浓度。研究区地处山前冲洪积扇前缘,含水层岩性以中细砂为主,夹杂不同程度的粉土、粉质黏土,较山前含水介质中的铁锰氧化物浓度增大[37]。铁氧化物作为重金属的吸附载体,对Cr(Ⅵ)的影响表现为:当地下水偏还原环境,含水介质中的铁氧化物发生还原性溶解,吸附于铁氧化物表面的Cr(Ⅵ)可以解吸至地下水中;当地下水偏氧化环境,含水介质中的铁氧化物含量增大,地下水中的Cr(Ⅵ)又被吸附在铁氧化物表面[18, 38]。研究区地下水总Fe-ORP-Cr(Ⅵ)质量浓度关系(图9)表明高浓度Cr(Ⅵ)的水点ORP集中于37~100 mV,图10显示随着地下水总Fe浓度的升高Cr(Ⅵ)质量浓度逐渐增大。说明弱氧化条件下含水介质中铁氧化物的溶解促进了Cr(Ⅵ)解析,引起地下水中Cr(Ⅵ)浓度增大。
锰氧化物主要通过改变Cr的价态而影响其迁移转化,表现为锰的氧化物或氢氧化物可以将Cr(Ⅲ)氧化为Cr(Ⅵ),反应式可表示为[39 − 40]:
Cr3++3MnOOH+H+→CrO2−4+3Mn2++2H2O (3) 2Cr3++3MnO2+2H2O→2CrO2−4+3Mn2++4H+ (4) 研究区内地下水TOC质量浓度为0.6~9.9 mg/L(表1),有机质作为地下水中重要的还原剂,可将Cr(Ⅵ)还原为Cr(Ⅲ),其反应式可表示为[41]:
Cr2O2−7+14H++6e→2Cr3++7H2O (5) 有机质既是电子的提供者,同时也消耗溶液中的部分H+,使地下水pH值升高而有利于Cr(Ⅵ)解析迁移。
地下水沉积环境对Cr(Ⅵ)迁移转化的影响也充分说明了污染场地水文地质条件调查的重要性。
4.4.5 竞争性吸附
竞争性含氧阴离子通过与Cr(Ⅵ)直接竞争吸附位点而促进Cr(Ⅵ)的解析[42 − 43]。F5因子中
HCO−3 载荷较高,结合本场地地下水Cr(Ⅵ)形态特征(图4),可判定HCO−3 与CrO2−4 、HCrO−4 存在竞争性吸附。从HCO−3 与Cr(Ⅵ)质量浓度关系(图11)可以看出,随着地下水中HCO−3 质量浓度增大,Cr(Ⅵ)质量浓度也存在上升趋势,高浓度的HCO−3 进一步促进Cr(Ⅵ)解析至地下水中。5. 结论
(1)铬渣堆周边40 m以浅的2个含水层均受到不同程度的Cr(Ⅵ)污染。第Ⅰ含水层Cr(Ⅵ)污染羽中心位于铬渣堆附近,Cr(Ⅵ)质量浓度最大值为82.1 mg/L;第Ⅱ含水层Cr(Ⅵ)污染羽中心位于铬渣堆下游,Cr(Ⅵ)质量浓度最大值为21.5 mg/L。
(2)研究区地下水中的Cr(Ⅵ)主要以
CrO2−4 和HCrO−4 形式存在,Cr2O2−7 含量极低。其中CrO2−4 占比大于80%,HCrO−4 占比不足20%。高浓度Cr(Ⅵ)水点的阴离子以HCO−3 和SO2−4 为主,阳离子以Na+和Ca2+为主,水化学类型表现为HCO3•SO4—Na•Ca型。(3)影响Cr(Ⅵ)迁移转化的因素可概括为污染源和场地水文地质条件 2 方面。富含Na+、
SO2−4 和Cr(Ⅵ)的铬渣渗滤液在降水淋滤和渗漏作用下进入地下水;场地水文地质条件导致Cr(Ⅵ)在不同含水层迁移过程中进一步发生差异:地下水pH值升高可降低含水介质对Cr(Ⅵ)的吸附能力,促使地下水中的HCrO−4 向CrO2−4 转化而有利于Cr(Ⅵ)迁移;铁氧化物在低ORP条件下的溶解可降低含水介质对Cr(Ⅵ)的吸附量;锰氧化物和有机质则通过氧化还原反应而影响Cr(Ⅵ)在地下水中的浓度;高浓度的HCO−3 通过竞争性吸附促进Cr(Ⅵ)解析至地下水中;蒸发浓缩作用促进了Cr(Ⅵ)在地下水中的富集。 -
表 1 研究区地下水化学性质与特征污染物质量浓度统计表
Table 1. Statistical table of groundwater components and characteristic pollutants mass concentration
层
位统计值 pH ORP TDS TOC 组分质量浓度 K+ Na+ Ca2+ Mg2+ SO2−4 Cl− HCO−3 Fe Mn Cr Cr6+ 第
Ⅰ
含
水
层最小值 6.89 47.1 708 1.0 0.22 64.5 90.6 65.0 90.9 56.1 418 ND ND ND ND 最大值 7.73 165.5 1620 9.9 3.68 288.0 222.0 138.0 440.0 242.0 817 18.1 2.89 82.1 82.1 平均值 7.27 97.6 1191 2.2 0.89 135.2 140.7 99.2 210.8 156.5 564 1.7 0.44 4.0 4.0 变异系数 0.03 0.32 0.22 0.89 0.80 0.36 0.25 0.22 0.44 0.34 0.23 2.28 1.78 5.75 5.75 第
Ⅱ
含
水
层最小值 7.24 37.2 607 0.6 0.22 41.5 37.7 23.9 60.6 37.8 393 ND ND ND ND 最大值 8.08 158.7 1260 2.4 1.51 189.0 154.0 103.0 198.0 211.0 656 2.8 0.10 21.7 21.5 平均值 7.64 90.3 854 1.3 0.66 118.0 89.5 63.2 115.4 93.1 513 0.6 0.02 1.9 1.9 变异系数 0.04 0.41 0.26 0.46 0.57 0.39 0.39 0.34 0.41 0.59 0.16 1.25 1.82 3.09 3.11 注:表中变异系数和pH为无量纲;ORP单位为mV;其余指标单位为mg/L。 表 2 研究区旋转因子载荷矩阵
Table 2. Matrix of rotated factor loadings
组分 主因子 F1 F2 F3 F4 F5 pH 0.159 −0.108 0.694 −0.462 0.036 ORP 0.430 0.314 −0.003 0.693 −0.097 K+ 0.104 0.324 0.020 −0.121 0.189 Na+ 0.590 0.292 0.544 −0.065 0.344 Ca2+ 0.201 0.881 0.049 0.248 −0.080 Mg2+ 0.181 0.925 −0.058 0.182 −0.082 SO2−4 0.700 0.597 0.019 0.052 0.189 Cl− −0.071 0.915 0.168 −0.084 −0.146 HCO−3 0.020 0.166 0.446 0.519 0.568 TDS 0.415 0.846 0.177 −0.024 0.143 Fe −0.037 −0.026 0.013 0.981 0.023 Mn −0.129 0.347 0.166 0.703 0.294 TOC 0.102 0.193 0.204 0.925 0.093 总Cr 0.980 0.128 0.030 −0.075 −0.023 Cr(Ⅵ) 0.981 0.128 0.030 −0.074 −0.023 特征值 5.98 5.50 3.39 2.17 1.43 贡献率% 27.18 24.99 15.42 9.91 6.51 累计贡献率% 27.18 52.17 67.59 77.50 84.01 -
[1] WEI Yaqiang,XU Xiaoyun,ZHAO Ling,et al. Migration and transformation of chromium in unsaturated soil during groundwater table fluctuations induced by rainfall[J]. Journal of Hazardous Materials,2021,416:126229. doi: 10.1016/j.jhazmat.2021.126229
[2] 孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治,2016,38(6):50 − 53. [MENG Fansheng. Pollution charateristics of soils polluted by chromium slag in China[J]. Environmental Pollution & Control,2016,38(6):50 − 53. (in Chinese with English abstract)]
MENG Fansheng. Pollution charateristics of soils polluted by chromium slag in China[J]. Environmental Pollution & Control, 2016, 38(6): 50 − 53. (in Chinese with English abstract)
[3] 王兴润,李磊,颜湘华,等. 铬污染场地修复技术进展[J]. 环境工程,2020,38(6):1 − 8. [WANG Xingrun,LI Lei,YAN Xianghua,et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering,2020,38(6):1 − 8. (in Chinese with English abstract)]
WANG Xingrun, LI Lei, YAN Xianghua, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering, 2020, 38(6): 1 − 8. (in Chinese with English abstract)
[4] 刘玉强,李丽,王琪,等. 典型铬渣污染场地的污染状况与综合整治对策[J]. 环境科学研究,2009,22(2):248 − 253. [LIU Yuqiang,LI Li,WANG Qi,et al. Study on pollution situation at typical chrome residue contaminated sites and corresponding integrated remediation plan[J]. Research of Environmental Sciences,2009,22(2):248 − 253. (in Chinese with English abstract)]
LIU Yuqiang, LI Li, WANG Qi, et al. Study on pollution situation at typical chrome residue contaminated sites and corresponding integrated remediation plan[J]. Research of Environmental Sciences, 2009, 22(2): 248 − 253. (in Chinese with English abstract)
[5] 张树龙,张焕祯,王智丽,等. 铬盐清洁生产工艺研究进展[J]. 无机盐工业,2014,46(2):6 − 9. [ZHANG Shulong,ZHANG Huanzhen,WANG Zhili,et al. Research progress of cleaner production technology of chromate[J]. Inorganic Chemicals Industry,2014,46(2):6 − 9. (in Chinese with English abstract)] doi: 10.3969/j.issn.1006-4990.2014.02.002
ZHANG Shulong, ZHANG Huanzhen, WANG Zhili, et al. Research progress of cleaner production technology of chromate[J]. Inorganic Chemicals Industry, 2014, 46(2): 6 − 9. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4990.2014.02.002
[6] SHAHID M,SHAMSHAD S,RAFIQ M,et al. Chromium speciation,bioavailability,uptake,toxicity and detoxification in soil-plant system:A review[J]. Chemosphere,2017,178:513 − 533. doi: 10.1016/j.chemosphere.2017.03.074
[7] PRASAD S,YADAV K K,KUMAR S,et al. Chromium contamination and effect on environmental health and its remediation:A sustainable approaches[J]. Journal of Environmental Management,2021,285:112174. doi: 10.1016/j.jenvman.2021.112174
[8] WANG Xingrun,LI Lei,YAN Xianghua,et al. Processes of chromium (VI) migration and transformation in chromate production site:A case study from the middle of China[J]. Chemosphere,2020,257:127282. doi: 10.1016/j.chemosphere.2020.127282
[9] FU Yu,WANG Lingli,PENG Wenya,et al. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media-a review[J]. Journal of Hazardous Materials,2021,417:126041. doi: 10.1016/j.jhazmat.2021.126041
[10] XU Teng,NAN Feng,JIANG Xiaofeng,et al. Effect of soil pH on the transport,fractionation,and oxidation of chromium(III)[J]. Ecotoxicology and Environmental Safety,2020,195:110459. doi: 10.1016/j.ecoenv.2020.110459
[11] 刘云惠,魏显有,王秀敏,等. 土壤中铬的吸附与形态提取研究[J]. 河北农业大学学报,2000,23(1):16 − 20. [LIU Yunhui,WEI Xianyou,WANG Xiumin,et al. A study on the adsorption of chromium in soil and the form extraction[J]. Journal of Agricultural University of Hebei,2000,23(1):16 − 20. (in Chinese with English abstract)] doi: 10.3969/j.issn.1000-1573.2000.01.005
LIU Yunhui, WEI Xianyou, WANG Xiumin, et al. A study on the adsorption of chromium in soil and the form extraction[J]. Journal of Agricultural University of Hebei, 2000, 23(1): 16 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1573.2000.01.005
[12] ZHANG Wenjie,LIN Mingfeng. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. The Science of the Total Environment,2020,733:139410. doi: 10.1016/j.scitotenv.2020.139410
[13] 王成文,许模,张俊杰,等. 土壤pH和Eh对重金属铬(Ⅵ)纵向迁移及转化的影响[J]. 环境工程学报,2016,10(10):6035 − 6041. [WANG Chengwen,XU Mo,ZHANG Junjie,et al. Influence of soils pH and Eh on vertical migration and transformation of Cr(Ⅵ)[J]. Chinese Journal of Environmental Engineering,2016,10(10):6035 − 6041. (in Chinese with English abstract)] doi: 10.12030/j.cjee.201505010
WANG Chengwen, XU Mo, ZHANG Junjie, et al. Influence of soils pH and Eh on vertical migration and transformation of Cr(Ⅵ)[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 6035 − 6041. (in Chinese with English abstract) doi: 10.12030/j.cjee.201505010
[14] 孙亚乔,校康,段磊,等. 粘土矿物作用下铬的迁移转化机理研究进展[J]. 生态环境学报,2019,28(7):1484 − 1491. [SUN Yaqiao,XIAO Kang,DUAN Lei,et al. Chromium migration and transformation mechanism in the presence of clay minerals:A review[J]. Ecology and Environmental Sciences,2019,28(7):1484 − 1491. (in Chinese with English abstract)]
SUN Yaqiao, XIAO Kang, DUAN Lei, et al. Chromium migration and transformation mechanism in the presence of clay minerals: A review[J]. Ecology and Environmental Sciences, 2019, 28(7): 1484 − 1491. (in Chinese with English abstract)
[15] KWAK S,YOO J C,MOON D H,et al. Role of clay minerals on reduction of Cr(VI)[J]. Geoderma,2018,312:1 − 5. doi: 10.1016/j.geoderma.2017.10.001
[16] JAYACHANDRAN S,CHAKRABORTY P,SARKAR A,et al. Post depositional changes of sedimentary organic matter influence chromium speciation in continental slope sediments :A case study[J]. The Science of the Total Environment,2021,777:145783. doi: 10.1016/j.scitotenv.2021.145783
[17] SHI Zhenqing,PENG Shimeng,LIN Xiaofeng,et al. Predicting Cr(VI) adsorption on soils:The role of the competition of soil organic matter[J]. Environmental Science:Processes & Impacts,2020,22(1):95 − 104.
[18] 邹韵. 铬盐生产污染场地含水层水—岩界面铬迁移转化研究[D]. 北京:中国地质大学(北京),2015. [ZOU Yun. Study on chromium migration and transformation ingroundwater-rock interface in the chromium salt production contaminated sites[D]. Beijing:China University of Geosciences,2015. (in Chinese with English abstract)]
ZOU Yun. Study on chromium migration and transformation ingroundwater-rock interface in the chromium salt production contaminated sites[D]. Beijing: China University of Geosciences, 2015. (in Chinese with English abstract)
[19] ZHAO Xingmin,SOBECKY P A,ZHAO Lanpo,et al. Chromium(VI) transport and fate in unsaturated zone and aquifer:3D sandbox results[J]. Journal of Hazardous Materials,2016,306:203 − 209. doi: 10.1016/j.jhazmat.2015.12.004
[20] ZHANG Xiaowei,TONG Juxiu,HU B X,et al. Adsorption and desorption for dynamics transport of hexavalent chromium (Cr(VI)) in soil column[J]. Environmental Science and Pollution Research International,2018,25(1):459 − 468. doi: 10.1007/s11356-017-0263-0
[21] 贺勇,胡广,张召,等. 污染场地六价铬迁移转化机制与数值模拟研究[J]. 岩土力学,2022,43(2):528 − 538. [HE Yong,HU Guang,ZHANG Zhao,et al. Numerical simulation on the migration and transformation mechanism of hexavalent chromium in contaminated site[J]. Rock and Soil Mechanics,2022,43(2):528 − 538. (in Chinese with English abstract)]
HE Yong, HU Guang, ZHANG Zhao, et al. Numerical simulation on the migration and transformation mechanism of hexavalent chromium in contaminated site[J]. Rock and Soil Mechanics, 2022, 43(2): 528 − 538. (in Chinese with English abstract)
[22] 刘玲,肖利萍,李喜林. 铬渣渗滤液中六价铬在地下水中迁移模拟[J]. 系统仿真学报,2018,30(2):560 − 568. [LIU Ling,XIAO Liping,LI Xilin. Simulation of migration of hexavalent chromium in groundwater[J]. Journal of System Simulation,2018,30(2):560 − 568. (in Chinese with English abstract)]
LIU Ling, XIAO Liping, LI Xilin. Simulation of migration of hexavalent chromium in groundwater[J]. Journal of System Simulation, 2018, 30(2): 560 − 568. (in Chinese with English abstract)
[23] 吕永高,蔡五田,杨骊,等. 中试尺度下可渗透反应墙位置优化模拟——以铬污染地下水场地为例[J]. 水文地质工程地质,2020,47(5):189 − 195. [LYU Yonggao,CAI Wutian,YANG Li,et al. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier:A case study of the hexavalent chromium contaminated site[J]. Hydrogeology & Engineering Geology,2020,47(5):189 − 195. (in Chinese with English abstract)]
LYU Yonggao, CAI Wutian, YANG Li, et al. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: A case study of the hexavalent chromium contaminated site[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 189 − 195. (in Chinese with English abstract)
[24] 边超,蔡五田,吕永高,等. Cr(Ⅵ)踪迹指标现场测定用于铬污染地下水源解析[J]. 环境科学与技术,2020,43(2):150 − 155. [BIAN Chao,CAI Wutian,LYU Yonggao,et al. Field determination of trace ion in Cr(Ⅵ)-polluted groundwater and its application in source apportionment[J]. Environmental Science & Technology,2020,43(2):150 − 155. (in Chinese with English abstract)]
BIAN Chao, CAI Wutian, LYU Yonggao, et al. Field determination of trace ion in Cr(Ⅵ)-polluted groundwater and its application in source apportionment[J]. Environmental Science & Technology, 2020, 43(2): 150 − 155. (in Chinese with English abstract)
[25] 边超,蔡五田,刘金巍,等. FPXRF用于污染场地铬分布特征及迁移规律研究[J]. 环境科学与技术,2017,40(12):126 − 132. [BIAN Chao,CAI Wutian,LIU Jinwei,et al. Study on distribution and migration of chromium in contaminated site with FPXRF[J]. Environmental Science & Technology,2017,40(12):126 − 132. (in Chinese with English abstract)]
BIAN Chao, CAI Wutian, LIU Jinwei, et al. Study on distribution and migration of chromium in contaminated site with FPXRF[J]. Environmental Science & Technology, 2017, 40(12): 126 − 132. (in Chinese with English abstract)
[26] 边超,蔡五田,刘金巍,等. 土壤中Cr(Ⅵ)现场检测技术在污染调查中的应用[J]. 环境科学与技术,2016,39(5):53 − 55. [BIAN Chao,CAI Wutian,LIU Jinwei,et al. Application of in situ detecting technique for Cr(Ⅵ) in polluted soil investigation[J]. Environmental Science & Technology,2016,39(5):53 − 55. (in Chinese with English abstract)]
BIAN Chao, CAI Wutian, LIU Jinwei, et al. Application of in situ detecting technique for Cr(Ⅵ) in polluted soil investigation[J]. Environmental Science & Technology, 2016, 39(5): 53 − 55. (in Chinese with English abstract)
[27] CHEN Wenfang,ZHANG Yaobin,SHI Weiwei,et al. Analysis of hydrogeochemical characteristics and origins of chromium contamination in groundwater at a site in Xinxiang City,Henan Province[J]. Applied Sciences,2021,11(24):11683.
[28] ZHANG Yaobin,ZHANG Qiulan,CHEN Wenfang,et al. Hydrogeochemical analysis and groundwater pollution source identification based on self-organizing map at a contaminated site[J]. Journal of Hydrology,2023,616:128839.
[29] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Standard for groundwater quality:GB/T 14848—2017[S]. Beijing:Standards Press of China,2017. (in Chinese)]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[30] 吕航,刘明遥,苏小四,等. 主因子分析方法在确定地下水石油烃生物降解过程中的应用[J]. 中南大学学报(自然科学版),2013,44(8):3552 − 3560. [LYU Hang,LIU Mingyao,SU Xiaosi,et al. Determination of biogeochemical processes in oil-contaminated aquifer using principal component analysis[J]. Journal of Central South University (Science and Technology),2013,44(8):3552 − 3560. (in Chinese with English abstract)]
LYU Hang, LIU Mingyao, SU Xiaosi, et al. Determination of biogeochemical processes in oil-contaminated aquifer using principal component analysis[J]. Journal of Central South University (Science and Technology), 2013, 44(8): 3552 − 3560. (in Chinese with English abstract)
[31] 钱康,张继,陈鹏,等. 云南乌蒙山盘河地区地下水水化学及同位素特征[J]. 地质通报,2022,41(7):1291 − 1299. [QIAN Kang,ZHANG Ji,CHEN Peng,et al. Hydrochemical and isotopic characteristics of groundwater in Panhe Area of Wumeng Mountain,Yunnan[J]. Geological Bulletin of China,2022,41(7):1291 − 1299. (in Chinese with English abstract)] doi: 10.12097/j.issn.1671-2552.2022.07.015
QIAN Kang, ZHANG Ji, CHEN Peng, et al. Hydrochemical and isotopic characteristics of groundwater in Panhe Area of Wumeng Mountain, Yunnan[J]. Geological Bulletin of China, 2022, 41(7): 1291 − 1299. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2022.07.015
[32] BETHKE C M. Geochemical and Biogeochemical Reaction Modeling[M]. Cambridge,UK:Cambridge University Press,2007.
[33] 丁翼. 中国铬盐生产状况与展望[J]. 化工进展,2004,23(4):345 − 348. [DING Yi. Present status and prospect of chromate production in China[J]. Chemical Industry and Engineering Progress,2004,23(4):345 − 348. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6613.2004.04.002
DING Yi. Present status and prospect of chromate production in China[J]. Chemical Industry and Engineering Progress, 2004, 23(4): 345 − 348. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6613.2004.04.002
[34] 崔佳琪,李仙岳,史海滨,等. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学,2020,41(9):4011 − 4020. [CUI Jiaqi,LI Xianyue,SHI Haibin,et al. Chemical evolution and formation mechanism of groundwater in Hetao irrigation area[J]. Environmental Science,2020,41(9):4011 − 4020. (in Chinese with English abstract)]
CUI Jiaqi, LI Xianyue, SHI Haibin, et al. Chemical evolution and formation mechanism of groundwater in Hetao irrigation area[J]. Environmental Science, 2020, 41(9): 4011 − 4020. (in Chinese with English abstract)
[35] 李状,苏晶文,董长春,等. 安徽马鞍山市当涂地区地下水水化学特征及演化机制[J]. 中国地质,2022,49(5):1509 − 1526. [LI Zhuang,SU Jingwen,DONG Changchun,et al. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu Area,Ma’anshan City,Anhui Province[J]. Geology in China,2022,49(5):1509 − 1526. ( in Chinese with English abstract] doi: 10.12029/gc20220510
LI Zhuang, SU Jingwen, DONG Changchun, et al. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu Area, Ma’anshan City, Anhui Province[J]. Geology in China, 2022, 49(5): 1509 − 1526. ( in Chinese with English abstract doi: 10.12029/gc20220510
[36] 李志红,王广才,康飞,等. 基于水化学和同位素特征的新乡某地下水污染场地水文地质概念模型细化[J]. 水文地质工程地质,2017,44(2):57 − 62. [LI Zhihong,WANG Guangcai,KANG Fei,et al. Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology,2017,44(2):57 − 62. (in Chinese with English abstract)]
LI Zhihong, WANG Guangcai, KANG Fei, et al. Boundary refine of hydrogeological conceptional model of a groundwater contaminated site in Xinxiang city based on the hydrochemistry and isotope evidence[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 57 − 62. (in Chinese with English abstract)
[37] 冯国平. 豫北山前新乡市北部冲洪积扇地下水水化学特征及演化机理研究[D]. 青岛:山东科技大学,2020. [FENG Guoping. Research on groundwater hydrochemical characteristics and evolution mechanism of alluvial fans in the north of Xinxiang City,piedmont of northern Henan[D]. Qingdao:Shandong University of Science and Technology,2020. (in Chinese with English abstract)]
FENG Guoping. Research on groundwater hydrochemical characteristics and evolution mechanism of alluvial fans in the north of Xinxiang City, piedmont of northern Henan[D]. Qingdao: Shandong University of Science and Technology, 2020. (in Chinese with English abstract)
[38] FAN Xianfang,DING Shiming,CHEN Musong,et al. Mobility of chromium in sediments dominated by macrophytes and cyanobacteria in different zones of Lake Taihu[J]. The Science of the Total Environment,2019,666:994-1002. [PubMed]
[39] 白利平,王业耀. 铬在土壤及地下水中迁移转化研究综述[J]. 地质与资源,2009,18(2):144 − 148. [BAI Liping,WANG Yeyao. Research progress of chromium disposition and distribution in soil and groundwater[J]. Geology and Resources,2009,18(2):144 − 148. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-1947.2009.02.014
BAI Liping, WANG Yeyao. Research progress of chromium disposition and distribution in soil and groundwater[J]. Geology and Resources, 2009, 18(2): 144 − 148. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1947.2009.02.014
[40] JOBBY R,JHA P,YADAV A K,et al. Biosorption and biotransformation of hexavalent chromium[Cr(VI)]:A comprehensive review[J]. Chemosphere,2018,207:255 − 266. doi: 10.1016/j.chemosphere.2018.05.050
[41] 陈英旭,何增耀,吴建平. 土壤中铬的形态及其转化[J]. 环境科学,1994,15(3):53 − 56. [CHEN Yingxu,HE Zengyao,WU Jianping. Forms and transformation of chromium species in soils[J]. Environmental Science,1994,15(3):53 − 56. (in Chinese)] doi: 10.3321/j.issn:0250-3301.1994.03.022
CHEN Yingxu, HE Zengyao, WU Jianping. Forms and transformation of chromium species in soils[J]. Environmental Science, 1994, 15(3): 53 − 56. (in Chinese) doi: 10.3321/j.issn:0250-3301.1994.03.022
[42] 桂新安,杨海真,王少平,等. 铬在土壤中的吸附解吸研究进展[J]. 土壤通报,2007,38(5):1007 − 1012. [GUI Xin’an,YANG Haizhen,WANG Shaoping,et al. Advance in studies of chromium sorption and desorption in soils[J]. Chinese Journal of Soil Science,2007,38(5):1007 − 1012. (in Chinese with English abstract)]
GUI Xin’an, YANG Haizhen, WANG Shaoping, et al. Advance in studies of chromium sorption and desorption in soils[J]. Chinese Journal of Soil Science, 2007, 38(5): 1007 − 1012. (in Chinese with English abstract)
[43] BAE S,YOON S,KAPLAN U,et al. Effect of groundwater ions (Ca2+,Na+,and HCO−3) on removal of hexavalent chromium by Fe(II)-phosphate mineral[J]. Journal of Hazardous Materials,2020,398:122948. doi: 10.1016/j.jhazmat.2020.122948
期刊类型引用(2)
1. 陈俐,黄涛,孟靖华,左欢欢. 市政给水管网中重金属污染水源的迁移规律分析及治理方法研究. 环境科学与管理. 2025(03): 73-78 . 百度学术
2. 江修雨,沈小雄. 二苯碳酰二肼分光光度法测定固体废物中六价铬的方法研究. 化学工程与装备. 2024(09): 133-135 . 百度学术
其他类型引用(0)
-