中国地质环境监测院
中国地质灾害防治工程行业协会
主办

喜德县中坝村火后泥石流发育特征及预警避险

殷万清, 金涛, 胡卸文, 曹希超, 杨相斌, 黄健. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报, 2021, 32(3): 61-69. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-08
引用本文: 殷万清, 金涛, 胡卸文, 曹希超, 杨相斌, 黄健. 喜德县中坝村火后泥石流发育特征及预警避险[J]. 中国地质灾害与防治学报, 2021, 32(3): 61-69. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-08
YIN Wanqing, JIN Tao, HU Xiewen, CAO Xichao, YANG Xiangbin, HUANG Jian. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61-69. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-08
Citation: YIN Wanqing, JIN Tao, HU Xiewen, CAO Xichao, YANG Xiangbin, HUANG Jian. Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 61-69. doi: 10.16031/j.cnki.issn.1003-8035.2021.03-08

喜德县中坝村火后泥石流发育特征及预警避险

  • 基金项目: 国家自然科学基金资助(41731285;41672283)
详细信息
    作者简介: 殷万清(1964-),男,矿产系矿山地质专业,高级工程师,主要从事地质灾害、环境地质方面的技术管理与研究工作。E-mail:371113039@qq.com
    通讯作者: 胡卸文(1963-),男,博士,教授、博士生导师,主要从事工程地质、环境地质方面的教学与研究工作。E-mail:huxiewen@163.com
  • 中图分类号: P642.23

Study on the development characteristics of post-fire debris flow and its early warning risk aversion in Zhongba Village, Xide County

More Information
  • 2020年5月7日四川省凉山彝族自治州喜德县鲁基乡中坝村发生森林火灾,过火面积约6.7 km2。林火后火烧迹地坡面灰烬厚约2~6 cm,同时表层土壤结构被扰动,在6月4日傍晚20 min左右的强降雨下,中坝村后山4条沟道同时暴发了火后泥石流灾害,对沟口的41户164名居民构成严重威胁。通过遥感解译、野外调查,查明了火烧区4条沟道的火烈度及物源分布特征,分析了火后泥石流的发育特征,并进行了危险度评估。基于火后泥石流暴发降雨阈值、实时雨量监测数据与群测群防于一体,提出了一套适用于山区火后泥石流的预警避险方案,在该沟得到成功应用,并确保了沟口居民安全。

  • 加载中
  • 图 1  2020年5月7日喜德森林火灾火烧区平面示意图

    Figure 1. 

    图 2  中坝村后山森林火灾火烧区不同火烈度分区图

    Figure 2. 

    图 3  中坝村后山森林火烧区不同火烈度部位典型照片

    Figure 3. 

    图 4  中坝村火后泥石流冲毁沟口民房

    Figure 4. 

    图 5  火烧区泥石流沟域内物源特征

    Figure 5. 

    图 6  火烧区各泥石流沟不同物源占比图

    Figure 6. 

    图 7  中坝村火后泥石流预警避险实施流程

    Figure 7. 

    表 1  中坝村后山火烧迹地不同强度火烈度判别特征

    Table 1.  Distinguishing characteristics of fire intensity of different intensity in Zhongba Village burned area

    火强度特点
    未火烧火烧前后地表覆盖物无变化
    轻度火烧超过50%的枯枝落叶未完全燃烧
    中度火烧大部分枯枝落叶被烧毁,但是大部分粗可燃物未完全燃烧
    严重火烧枯枝落叶和粗可燃物均被完全烧毁,地表为灰烬覆盖
    下载: 导出CSV

    表 2  中坝村森林火烧区不同火烈度面积占比数据统计

    Table 2.  Statistics on the proportion of different fire intensity areas in the forest fire area of Zhongba Village /%

    火烧区轻度火烈度区面积占比中度火烈度区面积占比重度火烈度区面积占比中度及重度火烈度区面积占比
    整个火烧迹地14.3119.7665.9385.69
    1#沟2.1126.5669.4195.97
    2#沟3.6916.9478.3795.32
    3#沟3.1818.5174.7893.28
    4#沟7.3626.5263.8290.33
    下载: 导出CSV

    表 3  火烧区4条泥石流沟形态特征统计

    Table 3.  Morphological characteristics statistics of 4 debris flow ditches in burned area

    沟道编号流域面积/km2主沟长/km主沟纵坡比降/‰相对高差/m岸坡坡度/(°)沟谷形状
    1#0.130.65245024440~50“V”形
    2#0.230.89342931740~50“V”形
    3#0.361.04036032635~45“V”形
    4#0.732.09031139535~45“V”形
    下载: 导出CSV

    表 4  火烧区各泥石流沟动、静储量统计

    Table 4.  Statistics of dynamic and static reserves of debris flow gully in burned area /(×104 m3)

    沟号物源储量崩滑物源沟道物源坡面侵蚀物源总计
    1#沟静储量1.100.203.204.50
    动储量0.330.060.320.71
    2#沟静储量1.600.238.4010.23
    动储量0.480.071.101.65
    3#沟静储量1.320.2514.0015.57
    动储量0.390.082.002.47
    4#沟静储量0.750.2035.0035.95
    动储量0.220.064.805.08
    下载: 导出CSV

    表 5  中坝村不同频率降雨强度值

    Table 5.  Rainfall intensity values of different design frequencies in Zhongba Village

    降雨时段/h设计频率/%
    201053.3321
    H1/6P19.2323.0226.6328.6931.2334.63
    H1P45.7055.9565.8671.5578.6488.14
    H6P86.73107.16127.01138.45152.72171.89
    H24P90.43109.23127.25137.54150.32167.40
    下载: 导出CSV

    表 6  中坝村2020年“6·4”泥石流暴发实时降雨量监测数据

    Table 6.  Real-time rainfall monitoring data of 6·4 debris flow outbreak in Zhongba Village in 2020

    雨量站位置距中坝村距离/
    km
    10 min雨量/
    mm
    1 h雨量/
    mm
    漫水湾镇松林村1-4组4.511.715.4
    下载: 导出CSV

    表 7  中坝村火后泥石流各沟道沟口平均流速计算结果

    Table 7.  Calculation results of the average flow velocity of each channel gully of post-fire debris flow in Zhongba Village

    沟道编号1#2#3#4#
    泥深/m1.31.41.61.0
    主沟纵坡降/‰450429360311
    平均流速/(m·s−1)7.857.288.047.03
    下载: 导出CSV

    表 8  中坝村2020年6·4火后泥石流峰值流量计算结果

    Table 8.  Calculation results of peak flow of 6·4 post-fire debris flow in Zhongba Village in 2020

    沟道编号1#2#3#4#
    平均流速/(m·s−1)7.857.288.047.03
    计算断面面积/m25.8811.5611.312.75
    峰值流量/(m3·s−1)46.1774.1990.9219.33
    下载: 导出CSV

    表 9  中坝村1#~4#沟道沟域基础数据

    Table 9.  Basic data of 1#~4# trench trench area in Zhongba Village

    沟道编号泥石流规模m/
    (103 m3)
    暴发频率f/
    (次·100年−1)
    流域面积s1/
    km2
    主沟长度s2/
    km
    流域相对高差s3/
    km
    流域切割密度s6/
    km
    不稳定沟床比例s9/
    %
    1#6.3032.430.1300.6520.2449.3376
    2#11.4028.730.2300.8930.3179.0485
    3#12.3027.980.3601.0400.3269.0080
    4#2.6056.150.7302.0900.39511.4065
    下载: 导出CSV

    表 10  中坝村泥石流1#~4#沟危险度评价

    Table 10.  Evaluation of dangerous degree of ditch 1#~4# in Zhongba Village

    沟道编号1#2#3#4#
    泥石流规模M/103 m30.2660.3520.3630.138
    暴发频率F/(次·100年−1)0.7560.7290.7230.875
    流域面积S1/km20.0850.1300.1600.225
    主沟长度S2/km0.1750.2850.2960.416
    流域相对高差S3/km0.1630.2110.2170.379
    流域切割密度S6/km0.4660.4520.4500.570
    不稳定沟床比例S9/%1111
    评价结果0.420.450.460.48
    下载: 导出CSV

    表 11  单沟泥石流危险度分级标准

    Table 11.  Classification standard of danger degree of single ditch debris flow

    单沟泥石流危险度0.0~0.20.2~0.40.4~0.60.6~0.80.8~1.0
    危险度分级极低危险低危险度中危险度高危险度极高危险
    下载: 导出CSV
  • [1]

    邸雪颖, 陶玉柱. 火后泥石流研究进展[J]. 应用生态学报,2013,24(8):2383 − 2392. [DI Xueying, TAO Yuzhu. Research progress in post-fire debris flow[J]. Chinese Journal of Applied Ecology,2013,24(8):2383 − 2392. (in Chinese with English abstract)

    [2]

    任云, 胡卸文, 王严, 等. 四川省九龙县色脚沟火后泥石流成灾机理[J]. 水文地质工程地质,2018,45(6):150 − 156. [REN Yun, HU Xiewen, WANG Yan, et al. Disaster mechanism of the Sejiao post-fire debris flow in Jiulong County of Sichuan[J]. Hydrogeology & Engineering Geology,2018,45(6):150 − 156. (in Chinese with English abstract)

    [3]

    胡卸文, 王严, 杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen, WANG Yan, YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract)

    [4]

    CANNON S H, RENEAU S L. Conditions for generation of fire‐related debris flows, Capulin Canyon, New Mexico[J]. Earth Surface Processes and Landforms,2000,25(10):1103 − 1121. doi: 10.1002/1096-9837(200009)25:10<1103::AID-ESP120>3.0.CO;2-H

    [5]

    CANNON S H, GARTNER J E. Wildfire-related debris flow from a hazards perspective[J]. Debris-flow Hazards and Related Phenomena,2005:363 − 385.

    [6]

    王严, 胡卸文, 金涛, 等. 火后泥石流形成过程的物源启动模式研究[J]. 工程地质学报,2019,27(6):1415 − 1423. [WANG Yan, HU Xiewen, JIN Tao, et al. Material initiation of debris flow generation processes after hillside fires[J]. Journal of Engineering Geology,2019,27(6):1415 − 1423. (in Chinese with English abstract)

    [7]

    STALEY D M, NEGRI J A, KEAN J W, et al. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States[J]. Geomorphology,2017,278(FEB. 1):149 − 162.

    [8]

    WALL S A, ROERING J J, RENGERS F K. Runoff-initiated post-fire debris flow Western Cascades, Oregon[J]. Landslides,2020,17(7):1649 − 1661. doi: 10.1007/s10346-020-01376-9

    [9]

    NYMAN P, SMITH H G, SHERWIN C B, et al. Predicting sediment delivery from debris flows after wildfire[J]. Geomorphology,2015,250:173 − 186. doi: 10.1016/j.geomorph.2015.08.023

    [10]

    PARISE M, CANNON S H. Wildfire impacts on the processes that generate debris flows in burned watersheds[J]. Natural Hazards,2012,61(1):217 − 227. doi: 10.1007/s11069-011-9769-9

    [11]

    SANTI P M, DEWOLFE V G, HIGGINS J D. Sources of debris flow material in burned areas[J]. Geomorphology,2008,96(3/4):310 − 321.

    [12]

    GABET E J, STERNBERG P. The effects of vegetative ash on infiltration capacity, sediment transport, and the generation of progressively bulked debris flows[J]. Geomorphology,2008,101(4):666 − 673. doi: 10.1016/j.geomorph.2008.03.005

    [13]

    任云. 四川九龙县色脚沟火后泥石流成灾机理及危险性评价[D]. 成都: 西南交通大学, 2018.

    REN yun. The disaster mechanism and risk assessment of sejiao post-fire debris flow in jiulong, sichuan[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)

    [14]

    孙佳佳, 于东升, 史学正, 等. 植被叶面积指数与覆盖度定量表征红壤区土壤侵蚀关系的对比研究[J]. 土壤学报,2010,47(6):1060 − 1066. [SUN Jiajia, YU Dongsheng, SHI Xuezheng, et al. Comparison of between Lai and vfc in relationship with soil erosion in the red soil hilly region of South China[J]. Acta Pedologica Sinica,2010,47(6):1060 − 1066. (in Chinese with English abstract) doi: 10.11766/trxb200910150458

    [15]

    MILLER J D, THODE A E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR[J]. Remote Sensing of Environment,2007,109(1):66 − 80. doi: 10.1016/j.rse.2006.12.006

    [16]

    王晓莉, 王文娟, 常禹, 等. 基于NBR指数分析大兴安岭呼中森林过火区的林火烈度[J]. 应用生态学报,2013,24(4):967 − 974. [WANG Xiaoli, WANG Wenjuan, CHANG Yu, et al. Fire severity of burnt area in Huzhong forest region of Great Xing'an Mountains, Northeast China based on normalized burn ratio analysis[J]. Chinese Journal of Applied Ecology,2013,24(4):967 − 974. (in Chinese with English abstract)

    [17]

    PARSONS A, ROBICHAUD P, LEWIS S A, et al. Field guide for mapping post-fire soil burn severity[R]. General Technical Report RMRS-GTR-243. USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010.

    [18]

    陈子龙. 仁额拥沟火后泥石流发育特征及成因机制研究[D]. 成都: 成都理工大学, 2016.

    CHEN Zilong. Reasearch on development characteristics and genetic mechanism of the post-fire debris flow in Reneyong ravine[D]. Chengdu: Chengdu University of Technology, 2016. (in Chinese with English abstract)

    [19]

    李明威, 唐川, 陈明, 等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)

    [20]

    刘佳, 赵海军, 马凤山, 等. 基于改进变异系数法的G109拉萨—那曲段泥石流危险性评价[J]. 中国地质灾害与防治学报,2020,31(4):63 − 70. [LIU Jia, ZHAO Haijun, MA Fengshan, et al. Risk assessment of G109 Lhasa-Naqu Debris flow based on improved coefficient of variation[J]. The Chinese Journal of Geological Hazard and Control,2020,31(4):63 − 70. (in Chinese with English abstract)

    [21]

    翟淑花, 冒建, 南赟, 等. 基于遗传规划的泥石流多因子融合预测方法[J]. 中国地质灾害与防治学报,2020,31(6):111 − 115. [ZHAI Shuhua, MAO Jian, NAN Yun, et al. Multi-factors fusion method of debris flow prediction based on genetic programming[J]. The Chinese Journal of Geological Hazard and Control,2020,31(6):111 − 115. (in Chinese with English abstract)

    [22]

    刘希林. 沟谷泥石流危险度计算公式的由来及其应用实例[J]. 防灾减灾工程学报,2010,30(3):241 − 245. [LIU Xilin. Quantitative assessment on site-specific debris flow hazard and application[J]. Journal of Disaster Prevent and Mitigation Engineering,2010,30(3):241 − 245. (in Chinese with English abstract)

  • 加载中

(7)

(11)

计量
  • 文章访问数:  1645
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2020-06-22
修回日期:  2020-07-01
刊出日期:  2021-06-25

目录