中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于指标变权重复合云模型的岩质边坡稳定性评价初探

陈忠源, 戴自航. 基于指标变权重复合云模型的岩质边坡稳定性评价初探[J]. 中国地质灾害与防治学报, 2021, 32(6): 9-17. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-02
引用本文: 陈忠源, 戴自航. 基于指标变权重复合云模型的岩质边坡稳定性评价初探[J]. 中国地质灾害与防治学报, 2021, 32(6): 9-17. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-02
CHEN Zhongyuan, DAI Zihang. A preliminary study on evaluation of rock slope stability based on index variable weight compound cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 9-17. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-02
Citation: CHEN Zhongyuan, DAI Zihang. A preliminary study on evaluation of rock slope stability based on index variable weight compound cloud model[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 9-17. doi: 10.16031/j.cnki.issn.1003-8035.2021.06-02

基于指标变权重复合云模型的岩质边坡稳定性评价初探

  • 基金项目: 福建省高校杰出青年科研人才培育计划资助项目(JYTJQ201801)
详细信息
    作者简介: 陈忠源(1983-),男,福建仙游人,硕士,副教授,研究方向为边坡稳定分析。E-mail:42134489@qq.com
    通讯作者: 戴自航(1966-),男,教授,博导,研究方向为岩土工程数值分析。E-mail:dzhang@fzu.edu.cn
  • 中图分类号: TU43; P642.21

A preliminary study on evaluation of rock slope stability based on index variable weight compound cloud model

  • Fund Project: Supported by Excellent Youth Foundation of Fujian Scientific Committee(JYTJQ201801)
More Information
  • 近年来,云模型评价方法在边坡的稳定性评价中得到了较深入的应用。但目前评价指标的权重多为某一精确值,没有考虑指标权重的不确定性和模糊性。为解决这一问题,尝试用指标变权重云模型表示各指标的权重,并引入权重范围系数以调整指标的权重变化幅度。参照《水电水利边坡工程地质勘察技术规程》和《地质灾害调查技术要求》对评价指标进行选取。参考行业规范、学者们的研究经验以及福建省的实际情况,采用等间距法对各评价指标相应的稳定分级区间进行划分。根据上述方法在MATLAB程序中编写算法,得到了基于指标变权重的复合云模型,并开发了相应的应用程序。通过对福建省连江县黄岐镇边坡的分析,认为该边坡总体处于基本稳定状态,但仍存在转化为不稳定的可能性。根据勘察报告,该坡段于2016年6月17日曾因强降雨发生崩塌,初步验证了本方法的分析结果。

  • 加载中
  • 图 1  坡高隶属于各稳定性级别的综合云模型图

    Figure 1. 

    图 2  指标坡高的权重云模型图

    Figure 2. 

    图 3  结构面间距指标的复合云模型图

    Figure 3. 

    图 4  复合云模型类圆锥状分布示意图

    Figure 4. 

    图 5  边坡稳定性评价应用程序的运行结果

    Figure 5. 

    图 6  2016年6月17日黄岐镇边坡崩塌情况

    Figure 6. 

    表 1  评价指标评分标准表

    Table 1.  Scoring standard table of evaluation indexes

    参数评分标准
    岩石强度 /MPa点荷载>104~102~41~2<1不宜采用
    单轴抗压强度250~100100~6060~3030~1515~5
    评分15~108532~0
    岩石质量指标RQD /%250~100100~6060~3030~1515~5
    评分20171383
    结构面间距 /cm200~100100~5050~3030~5<5
    评分20~15131085
    结构面条件粗糙度很粗糙粗糙较粗糙光滑擦痕、镜面
    评分64210
    充填物 /mm<5(硬)>5(硬)<5(软)>5(软)
    评分64220
    张开度 /mm未张开<0.10.1 ~1 1 ~5>5
    评分65410
    结构面长度 /m<11~33~1010~20>20
    评分64210
    岩石风化程度未风化微风化弱风化强风化全风化
    评分65310
    地下水条件状态干燥湿润潮湿滴水流水
    透水率(Lu)<0.10.1~11~1010~100>100
    评分1510740
    下载: 导出CSV

    表 2  结构面方位系数取值

    Table 2.  Orientation coefficient of structural plane

    破坏机制情况非常有利有利一般不利非常不利
    滑动 γ1αj-αsǀ>30°30°~20°20°~10°10°~5°<5°
    倾倒γ1αjαs−180°ǀ
    滑动,倾倒F10.150.40.70.851
    滑动 γ2βjǀ<20°20°~30°30°~35°35°~45°>45°
    滑动F20.150.40.70.851
    倾倒F211111
    滑动 γ3=βjβs>10°10°~0°0°~−10°<−10°
    倾倒 γ3=βj+βs<110°110°~120°>120°————
    滑动,倾倒F305255060
      注:αs为边坡倾向;αj为结构面倾向;βs为边坡倾角;βj为结构面倾角。
    下载: 导出CSV

    表 3  岩质边坡稳定性评价指标及其各分级区间

    Table 3.  Stability evaluation index of rock slope and its grade intervals

    评价指标稳定性等级
    很稳定稳定基本稳定不稳定很不稳定
    坡高 /m(I1)[0,10)[10,20)[20,30)[30,65)[65,100)
    坡角 /(°)(I2)[0,10)[10,30)[30,45)[45,65)[65,90)
    岩石强度评分值(I3)[12,15)[9,12)[6,9)[3,6)[0,3)
    岩石质量指标评分值(I4)[16,20)[12,16)[8,12)[4,8)[0,4)
    结构面间距评分值(I5)[16,20)[12,16)[8,12)[4,8)[0,4)
    结构面条件评分值(I6)[24,30)[18,24)[12,18)[6,12)[0,6)
    地下水条件评分值(I7)[12,15)[9,12)[6,9)[3,6)[0,3)
    结构面方向修正值(I8)[0,12)[12,24)[24,36)[36,48)[48,60)
    边坡开挖方法修正值(I9)[6,10)[3,6)[0,3)[−4,0)[−8,−4)
    年平均降雨量(I10)[1070,1580.6)[1580.6,1650.4)[1650.4,1720.2)[1720.2,1790)[1790,1859.8)
    下载: 导出CSV

    表 4  各专家对评价指标的初始权重

    Table 4.  Initial weight of each expert on the evaluation index /10−3

    指标专家
    1
    专家
    2
    专家
    3
    专家
    4
    专家
    5
    专家
    6
    专家
    7
    专家
    8
    专家
    9
    专家
    10
    专家
    11
    专家
    12
    I1192120152218171925242122
    I2767260667683797278757871
    I3323738403934373833404048
    I41061039993898784105999710193
    I5242631334329373138394348
    I6158159158156158164164160166169182188
    I7182229252329272439323026
    I8277283288280276275261271279261246220
    I9141822202023201730282320
    I10276259255272253258273263213236237264
    下载: 导出CSV

    表 5  各指标的基于信心指数云模型特征值

    Table 5.  Characteristic values of various indicators based on confidence index cloud model /10−3

    指标ExEnHe
    I1405.11.0
    I2665.41.9
    I3554.91.2
    I4867.61.7
    I5539.82.2
    I61487.32.3
    I7456.41.5
    I824020.98.5
    I9416.41.1
    I1022721.28.6
    下载: 导出CSV

    表 6  黄岐镇边坡场地内岩土层特性参数

    Table 6.  Property parameters of strata in slope of Huangqi town

    序号地层名称天然
    重度
    γ/(kN·m−3)
    饱和
    重度
    γsat/(kN·m−3)
    天然快剪 饱和快剪厚度/m
    ck/kPaφk/(°)ck/kPaφk/(°)
    素填土17.518.010.015.08.511.50.50~1.40
    坡积粉质黏土18.6418.7822.020.019.1917.450.5~1.3
    残积砂质黏土18.519.023.022.020.018.01.5~2.8
    全风化花岗岩19.019.525.027.022.023.00~3.0
    ⑤-1砂土状强风化花岗岩21.021.530.032.026.028.02.3~7.3
    ⑤-2碎块状强风化花岗岩22.022.535.035.028.030.01.1~2.4
    中风化花岗岩24.040.050.07.4~15.4
    下载: 导出CSV

    表 7  指标评价在各评价等级中的隶属度范围

    Table 7.  The range of the membership degree of the index evaluation in each evaluation grade

    评价指标稳定性等级
    很稳定稳定基本稳定不稳定很不稳定
    I1[0,0][0,0][0.74,0.82][0.04,0.11][0,0]
    I2[0,0][0.15,0.28][0.39,0.53][0,0][0,0]
    I3[0,0][0.01,0.05][0.96,0.97][0,0][0,0]
    I4[0,0][0,0][0.25,0.39][0.25,0.39][0,0]
    I5[0,0][0,0.02][1,1][0,0][0,0]
    I6[0,0.02][0,1][0,0][0,0][0,0]
    I7[0,0][0.95,0.97][0.01,0.04][0,0][0,0]
    I8[1,1][0,0][0,0][0,0][0,0]
    I9[0,0][0,0][0,0][0,0][1,1]
    I10[0,0][0.98,0.99][0.01,0.04][0,0][0,0]
    下载: 导出CSV

    表 8  评价指标的指标权重及其隶属度范围

    Table 8.  Weight of evaluation index and its range of membership degree

    评价指标Ex权重取值隶属度
    I10.0400.037[0.763,0.944]
    I20.0660.067[0.641,0.985]
    I30.0550.054[0.549,0.991]
    I40.0860.085[0.975,0.989]
    I50.0530.050[0.214,0.682]
    I60.1480.147[0.904,0.998]
    I70.0450.045[0.992,0.999]
    I80.2400.223[0.009,0.870]
    I90.0410.043[0.799,0.960]
    I100.2270.230[0,0.997]
    下载: 导出CSV
  • [1]

    李德毅, 孟海军, 史雪梅. 隶属云和隶属云发生器[J]. 计算机研究与发展,1995,32(6):15 − 20. [LI Deyi, MENG Haijun, SHI Xuemei. Membership clouds and membership cloud generators[J]. Journal of Computer Research and Development,1995,32(6):15 − 20. (in Chinese with English abstract)

    [2]

    SHI Y Z, ZHOU H C. Research on monthly flow uncertain reasoning model based on cloud theory[J]. Science China (Technological Sciences),2010,53(9):2408 − 2413. doi: 10.1007/s11431-010-4048-7

    [3]

    SPIRIDONOV V, CURIC M. A storm modeling system as an advanced tool in prediction of well organized slowly moving convective cloud system and early warning of severe weather risk[J]. Asia-Pacific Journal of Atmospheric Sciences,2015,51(1):61 − 75. doi: 10.1007/s13143-014-0060-3

    [4]

    SHI H, LIU H C, LI P, et al. An integrated decision making approach for assessing healthcare waste treatment technologies from a multiple stakeholder[J]. Waste Management,2017,59:508 − 517. doi: 10.1016/j.wasman.2016.11.016

    [5]

    梁伟章, 赵国彦. 矿山泥石流险情的变权云模型综合预测[J]. 中国地质灾害与防治学报,2017,28(1):82 − 88. [LIANG Weizhang, ZHAO Guoyan. Comprehensive prediction of mine debris flow' risk based on weight-varying cloud model[J]. The Chinese Journal of Geological Hazard and Control,2017,28(1):82 − 88. (in Chinese with English abstract)

    [6]

    黄仁东, 吴寒, 张惕, 等. 基于云模型的岩溶隧道涌水灾害危险性评价及其在青岩头隧道的应用[J]. 中国地质灾害与防治学报,2018,29(5):44 − 51. [HUANG Rendong, WU Han, ZHANG Ti, et al. Evaluation of water burst hazard in Karst tunnel based on cloud model and its application in Qingyantou Tunnel[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):44 − 51. (in Chinese with English abstract)

    [7]

    张军, 陈征宙, 刘登峰. 基于云模型的岩质边坡稳定性评估研究[J]. 水文地质工程地质,2014,41(6):44 − 50. [ZHANG Jun, CHEN Zhengzhou, LIU Dengfeng. Stability evaluation of a rock slope based on the cloud model[J]. Hydrogeology & Engineering Geology,2014,41(6):44 − 50. (in Chinese with English abstract)

    [8]

    LIU Z B, SHAO J F, XU W Y, et al. Comprehensive stability evaluation of rock slope using the cloud model-based approach[J]. Rock Mechanics and Rock Engineering,2014,47(6):2239 − 2252. doi: 10.1007/s00603-013-0507-3

    [9]

    于伟, 张浩, 杨鹏, 等. 基于云模型的黄土区公路边坡灾害风险评价[J]. 中国地质灾害与防治学报,2015,26(4):111 − 115. [YU Wei, ZHANG Hao, YANG Peng, et al. Risk assessment of highway slope disasters in loess areas based on cloud model[J]. The Chinese Journal of Geological Hazard and Control,2015,26(4):111 − 115. (in Chinese with English abstract)

    [10]

    袁爱平. 基于层次分析法-正态云模型的岩质边坡稳定性预测[J]. 水电能源科学,2016,34(9):153 − 156. [YUAN Aiping. Stability evaluation of rocky slope based on AHP-normal cloud model[J]. Water Resources and Power,2016,34(9):153 − 156. (in Chinese with English abstract)

    [11]

    方成杰, 钱德玲, 徐士彬, 等. 基于云模型的泥石流易发性评价[J]. 合肥工业大学学报(自然科学版),2017,40(12):1659 − 1665. [FANG Chengjie, QIAN Deling, XU Shibin, et al. An evaluation model of debris flow susceptibility based on cloud model[J]. Journal of Hefei University of Technology (Natural Science),2017,40(12):1659 − 1665. (in Chinese with English abstract)

    [12]

    徐镇凯, 温勇兵, 魏博文, 等. 基于组合赋权模糊云理论的高边坡稳定性评价[J]. 水利水运工程学报,2017(1):10 − 17. [XU Zhenkai, WEN Yongbing, WEI Bowen, et al. Stability evaluation method for high slope based on fuzzy cloud theory combined with weights[J]. Hydro-Science and Engineering,2017(1):10 − 17. (in Chinese with English abstract)

    [13]

    杨文东, 杨栋, 谢全敏. 基于云模型的边坡风险评估方法及其应用[J]. 华中科技大学学报(自然科学版),2018,46(4):30 − 34. [YANG Wendong, YANG Dong, XIE Quanmin. Study on slope risk assessment method based on cloud model and its application[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2018,46(4):30 − 34. (in Chinese with English abstract)

    [14]

    崔涛, 郑淑芬. 基于组合赋权-改进云模型的边坡稳定性评价方法[J]. 中外公路,2019,39(5):33 − 38. [CUI Tao, ZHENG Shufen. Slope stability evaluation method based on combination weighting approach and improved cloud model[J]. Journal of China & Foreign Highway,2019,39(5):33 − 38. (in Chinese)

    [15]

    WANG M W, WANG X, LIU Q Y, et al. A novel multi-dimensional cloud model coupled with connection numbers theory for evaluation of slope stability[J]. Applied Mathematical Modelling,2020,77:426 − 438. doi: 10.1016/j.apm.2019.07.043

    [16]

    陈忠源, 戴自航. 水库边坡稳定性评价的改进云模型[J]. 工程地质学报,2020,28(3):619 − 625. [CHEN Zhongyuan, DAI Zihang. Improved cloud model for stability evaluation of reservoir slopes[J]. Journal of Engineering Geology,2020,28(3):619 − 625. (in Chinese with English abstract)

    [17]

    陈忠源, 戴自航. 降雨条件下建筑边坡稳定性的云模型评价方法[J]. 中国地质灾害与防治学报,2020,31(2):50 − 56. [CHEN Zhongyuan, DAI Zihang. Cloud model evaluation method for building slope stability under rainfall[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):50 − 56. (in Chinese with English abstract)

    [18]

    中华人民共和国国家发展和改革委员会. 水电水利工程边坡工程地质勘察技术规程: DLT5337-2006. [M]. 北京: 中国电力出版社, 2006.

    National Development and Reform Commission, People's Republic of China. Technical specification for slope engineering geological survey of hydropower and water conservancy projects: DLT5337-2006[M]. Beijing: China Electric Power Press, 2006. (in Chinese)

    [19]

    自然资源部中国地质调查局. 地质灾害调查技术要求: DD 2019-08[S]. 2019.

    China Geological Survey, MNR. Technical requirements for geological disaster investigation: DD 2019-08.[S]. 2019. (in Chinese)

    [20]

    谢晓平, 刘光生. 近60年来福建省降雨时空分布特征[J]. 水电能源科学,2020,38(8):5 − 8. [XIE Xiaoping, LIU Guangsheng. Temporal and spatial distribution characteristics of rainfall in Fujian Province in recent 60 years[J]. Water Resources and Power,2020,38(8):5 − 8. (in Chinese with English abstract)

  • 加载中

(6)

(8)

计量
  • 文章访问数:  1066
  • PDF下载数:  46
  • 施引文献:  0
出版历程
收稿日期:  2020-11-03
修回日期:  2021-05-23
刊出日期:  2021-12-25

目录