-
摘要:
肯尼亚裂谷位于东非大裂谷东支中段,现代构造运动以及火山活动强烈,是当今地学研究的热点地区。裂谷区因其独特的地质构造背景、岩土体特性以及气象水文条件,使得地裂缝灾害较为发育。文章以肯尼亚裂谷地裂缝为研究对象,利用资料收集、野外调查、槽探、钻探和室内土工试验等研究手段,对研究区的地质环境背景、地裂缝平剖面结构特征进行研究。裂谷拉张和火山活动等内动力地质作用是该区域地裂缝形成的控制因素,浅表部松散易潜蚀的土体是地裂缝形成的物质基础,强降雨为地裂缝的形成提供了水力条件,“软硬软”的地层结构为水力侵蚀物质提供了有利的堆积场所。将肯尼亚裂谷区地裂缝的形成演化过程分为3个阶段:孕育阶段、扩展阶段和成灾阶段。
Abstract:The Kenya Rift valley is located in the middle section of the eastern branch of the Great Rift valley in East Africa. Modern tectonic movement and volcanic activity are intense, and it is a hotspot in current geological research.The rift zone has developed ground fissure disasters due to its unique geological structure background, rock and soil characteristics, and meteorological and hydrological conditions. In this paper, we have studied the geological environment background, plane characteristics and shallow section structure characteristics of ground fissures in rift valley area through data collection, detailed field geological surveytrenching, drilling and indoor geotechnical tests. Internal dynamic geological processes such as rift extension and volcanic activity are the controlling factors for the formation of ground fissures in this area; the loose and easily eroded soil on the shallow surface is the material basis for the formation of ground fissures; strong rainfall provides hydraulic power for the formation of ground fissure Conditions: The "soft-hard-soft" stratum structure provides a favorable accumulation place for water-erosive substances. Finally, we divide the formation and evolution process of ground fissures in the Kenya Rift Valley into three stages, the incubation stage, the expansion stage and the disaster stage.
-
Key words:
- Kenya Rift valley /
- ground fissures /
- flat profile characteristics /
- undercutting /
- genetic mechanism
-
表 1 地裂缝分布状况
Table 1. Distribution of ground fissures
地裂缝编号 走向/(°) 长度/m 主要特征 DL01 22 758 宽8 m,深4.5~5 m,平面呈直线状,底部可见明显水流冲刷痕迹,地层水平,未见明显位错 DL02 355 2000 宽5 m,深6.6 m,地表为直线状出露 DL03 357 1900 宽6 m,深4.8 m,地表为直线状出露 DL04 175 306 宽1.6~5 m,深2.7 m,地表为直线状出露 DL05 288 393 最宽处达12 m,深1.2 m,地表为直线状出露 DL06 181 1200 宽8.4 m,深6.8 m,与B3公路相交,地表为直线状出露 DL07 63 950 宽10~15 m,深5.4 m,线性延伸较好,侧壁垂直,冲刷强烈 DL08 327 665 直线延伸,在平面上与DL007在平面垂直相交 DL09 35 375 宽4~6 m,平面形态为直线状出露。 DL10 340 5000 出现时间为2018年3月13日傍晚,最大深度可达15 m,宽度约2~5 m DL11 255 947 宽2~4 m,侧壁垂直,地表为直线状出露 DL12 340 420 宽10~20 m,底部植被覆盖茂盛,地裂缝北端可观测到岩层出露 DL13 239 457 裂缝最北端存在一近圆形陷坑,宽3.7 m,深0.3~0.6 cm DL14 30 190 宽6 m,底部植被覆盖茂盛,地表为直线状出露 DL15 238 174 沿南东方向延伸,最终消失在田地里,两侧发育有落水洞,最深处1.5 m,植被发育茂盛 DL16 20 1400 雁列状展布,南段宽2~4 m,北段宽2~3 m,最深处1.5 m DL17 340 500 直线延伸,最深处1.5 m DL18 330 459 直线延伸,深度0.2 m左右,裂缝侧面发育一排小落水洞 DL19 343 1256 冲沟侧壁直立,现状宽2~5 m,深2~4 m DL20 340 1000 冲沟侧壁直立,现状宽4~5 m,深3~4 m DL21 350 1594 现状沟宽3~10 m,深2~3 m,直线延伸 -
[1] PENG J B, FAN Z J, WU D, et al. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology,2015,186:79 − 90. doi: 10.1016/j.enggeo.2014.08.015
[2] 彭建兵, 陈立伟, 黄强兵, 等. 地裂缝破裂扩展的大型物理模拟试验研究[J]. 地球物理学报,2008,51(6):1826 − 1834. [PENG Jianbing, CHEN Liwei, HUANG Qiangbing, et al. Large-scale physical simulative experiment on ground-fissure expansion mechanism[J]. Chinese Journal of Geophysics,2008,51(6):1826 − 1834. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5733.2008.06.024
[3] 徐继山, 彭建兵, 马学军, 等. 邢台市隆尧地裂缝发育特征及成因分析[J]. 工程地质学报,2012,20(2):160 − 169. [XU Jishan, PENG Jianbing, MA Xuejun, et al. Characteristic and mechanism analysis of ground fissures in Longyao, Xingtai[J]. Journal of Engineering Geology,2012,20(2):160 − 169. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2012.02.003
[4] 李志明, 杨旭东, 兰剑梅, 等. 河北邢台柏乡地裂缝成因分析[J]. 水文地质工程地质,2010,37(2):135 − 138. [LI Zhiming, YANG Xudong, LAN Jianmei, et al. An analysis of earth fissure at Baixiang County, Xingtai City[J]. Hydrogeology & Engineering Geology,2010,37(2):135 − 138. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.02.029
[5] 王庆良, 刘玉海, 陈志新, 等. 抽水引起的含水层水平应变: 地裂缝活动新机理[J]. 工程地质学报,2002,10(1):46 − 50. [WANG Qingliang, LIU Yuhai, CHEN Zhixin, et al. Horizontal strain of aquifer induced by groundwater pumping—a new mechanism for ground fissure movement[J]. Journal of Engineering Geology,2002,10(1):46 − 50. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2002.01.008
[6] 李世雄, 李守定, 郜洪强. 河北平原地裂缝分布特征及成因机制研究[J]. 工程地质学报,2006,14(2):178 − 183. [LI Shixiong, LI Shouding, GAO Hongqiang. The distribution characters and origin mechanics of ground fissures hazard in Hebei plain[J]. Journal of Engineering Geology,2006,14(2):178 − 183. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2006.02.006
[7] 卢全中, 赵富坤, 彭建兵, 等. 隐伏地裂缝破裂扩展研究综述[J]. 工程地质学报,2013,21(6):898 − 907. [LU Quanzhong, ZHAO Fukun, PENG Jianbing, et al. Overview on rupture propagation studies of buried ground-fissures[J]. Journal of Engineering Geology,2013,21(6):898 − 907. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.06.018
[8] 王景明, 王春梅, 刘科. 地裂缝及其灾害研究的新进展[J]. 地球科学进展,2001,16(3):303 − 313. [WANG Jingming, WANG Chunmei, LIU Ke. Progress in ground fissures and its hazard research[J]. Advance in Earth Sciences,2001,16(3):303 − 313. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2001.03.003
[9] 黄强兵, 彭建兵, 王飞永, 等. 特殊地质城市地下空间开发利用面临的问题与挑战[J]. 地学前缘,2019,26(3):85 − 94. [HUANG Qiangbing, PENG Jianbing, WANG Feiyong, et al. Issues and challenges in the development of urban underground space in adverse geological environment[J]. Earth Science Frontiers,2019,26(3):85 − 94. (in Chinese with English abstract)
[10] PENG J B, SUN P, IGWE O, et al. Loess caves, a special kind of geo-hazard on loess plateau, northwestern China[J]. Engineering Geology,2018,236:79 − 88. doi: 10.1016/j.enggeo.2017.08.012
[11] PENG J B, QU W, REN J, et al. Geological factors for the formation of xi’an ground fractures[J]. Journal of Earth Science,2018,29(2):468 − 478. doi: 10.1007/s12583-018-0841-1
[12] XU J S, PENG J B, DENG Y H, et al. Development characteristics and formation analysis of Baixiang earth fissure on North China plain[J]. Bulletin of Engineering Geology and the Environment,2019,78(5):3085 − 3094. doi: 10.1007/s10064-018-1324-4
[13] ZHUANG J Q, PENG J B, WANG G H, et al. Prediction of rainfall-induced shallow landslides in the Loess Plateau, Yan'an, China, using the TRIGRS model[J]. Earth Surface Processes and Landforms,2017,42(6):915 − 927. doi: 10.1002/esp.4050
[14] 郭宇, 周心经, 郑小战, 等. 广州夏茅村岩溶地面塌陷成因机理与塌陷过程分析[J]. 中国地质灾害与防治学报,2020,31(5):54 − 59. [GUO Yu, ZHOU Xinjing, ZHENG Xiaozhan, et al. Analysis on formation mechanism and process of Karst collapse in Xiamao Village, Guangzhou City of Guangdong Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(5):54 − 59. (in Chinese with English abstract)
[15] 冯亚伟, 李志峰, 仝路, 等. 山东荆泉断块区覆盖型岩溶塌陷控制因素和影响因素分析[J]. 中国地质灾害与防治学报,2020,31(3):73 − 82. [FENG Yawei, LI Zhifeng, TONG Lu, et al. Analysis on factors controlling and influencing overburden Karst collapse in Jingquan fault block, Shandong Province[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):73 − 82. (in Chinese with English abstract)
[16] 石鹏远, 余洁, 朱琳, 等. 应用地理探测器改进地面沉降危险性评估模型的研究[J]. 中国地质灾害与防治学报,2019,30(3):101 − 112. [SHI Pengyuan, YU Jie, ZHU Lin, et al. Hazard assessment model of land subsidence based on geographical detector[J]. The Chinese Journal of Geological Hazard and Control,2019,30(3):101 − 112. (in Chinese with English abstract)
[17] STAMPS D S, FLESCH L M, CALAIS E, et al. Current kinematics and dynamics of Africa and the east African rift system[J]. Journal of Geophysical Research:Solid Earth,2014,119(6):5161 − 5186. doi: 10.1002/2013JB010717
[18] JEAN C. The East African rift system[J]. Journal of African Earth Sciences,2005,43(1/2/3):379 − 410.
[19] HERNANDEZ-MARIN M, BURBEY T J. Controls on initiation and propagation of pumping-induced earth fissures: insights from numerical simulations[J]. Hydrogeology Journal,2010,18(8):1773 − 1785. doi: 10.1007/s10040-010-0642-9
[20] WILLIAMS F M, WILLIAMS M A J, AUMENTO F. Tensional fissures and crustal extension rates in the northern part of the Main Ethiopian Rift[J]. Journal of African Earth Sciences,2004,38(2):183 − 197. doi: 10.1016/j.jafrearsci.2003.10.007
[21] BUDHU M. Earth fissure formation from the mechanics of groundwater pumping[J]. International Journal of Geomechanics,2011,11(1):1 − 11. doi: 10.1061/(ASCE)GM.1943-5622.0000060
[22] 伍洲云, 余勤, 张云. 苏锡常地区地裂缝形成过程[J]. 水文地质工程地质,2003,30(1):67 − 72. [WU Zhouyun, YU Qin, ZHANG Yun. Forming process of earth fissure hazard in the Suzhou-Wuxi-Changzhou area[J]. Hydrogeology & Engineering Geology,2003,30(1):67 − 72. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2003.01.018
[23] 彭建兵, 马润勇, 邵铁全. 构造地质与工程地质的基本关系[J]. 地学前缘,2004,11(4):535 − 549. [PENG Jianbing, MA Runyong, SHAO Tiequan. Basic relation between structural geology and engineering geology[J]. Earth Science Frontiers,2004,11(4):535 − 549. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2004.04.020
[24] 乔建伟, 薛守中, 彭建兵, 等. 临汾盆地果场地裂缝成因机理分析[J]. 工程地质学报,2015,23(4):769 − 777. [QIAO Jianwei, XUE Shouzhong, PENG Jianbing, et al. Analysis for mechanism of Guochang earth fissures in Linfen basin[J]. Journal of Engineering Geology,2015,23(4):769 − 777. (in Chinese with English abstract)
[25] 彭建兵, 张勤, 黄强兵, 等. 西安地裂缝灾害[M]. 北京: 科学出版社, 2012.
PENG Jianbing, ZHANG Qin, HUANG Qiangbing, et al. Ground fissure disaster in Xi'an [M]. Beijing: Science Press, 2012. (in Chinese)
[26] 蒋臻蔚, 彭建兵, 王启耀. 抽水作用下先期断裂对地裂缝的影响研究[J]. 工程地质学报,2010,18(5):651 − 656. [JIANG Zhenwei, PENG Jianbing, WANG Qiyao. Influence of pre-existing fault on ground fissures during pumping action[J]. Journal of Engineering Geology,2010,18(5):651 − 656. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.05.007
[27] LU Q Z, LIU Y, PENG J B, et al. Immersion test of loess in ground fissures in Shuanghuaishu, Shaanxi Province, China[J]. Bulletin of Engineering Geology and the Environment,2020,79(5):2299 − 2312. doi: 10.1007/s10064-019-01718-5
[28] 乔建伟, 彭建兵, 邓亚虹, 等. 临汾盆地地裂缝基本特征研究[J]. 工程地质学报,2015,23(5):856 − 865. [QIAO Jianwei, PENG Jianbing, DENG Yahong, et al. The study on basic characteristic of earth fissure in Linfen basin[J]. Journal of Engineering Geology,2015,23(5):856 − 865. (in Chinese with English abstract)
[29] AYALEW L, YAMAGISHI H, REIK G. Ground cracks in Ethiopian Rift Valley: facts and uncertainties[J]. Engineering Geology,2004,75(3/4):309 − 324.
[30] NGECU W M, NYAMBOK I O. Ground subsidence and its socio-economic implications on the population: a case study of the Nakuru area in Central Rift Valley, Kenya[J]. Environmental Geology,2000,39(6):567 − 574. doi: 10.1007/s002540050468
[31] 唐林, 徐正宣, 赵平. 埃塞铁路的火山系列工程地质问题及对策探讨[J]. 四川建筑,2015,35(1):91 − 94. [TANG Lin, XU Zhengxuan, ZHAO Ping. Discussion on volcanic engineering geological problems and countermeasures of Ethiopian Railway[J]. Sichuan Architecture,2015,35(1):91 − 94. (in Chinese) doi: 10.3969/j.issn.1007-8983.2015.01.035
[32] 王金星, 谭鹏, 李广明, 等. 肯尼亚日均降雨量推求[J]. 工程建设与设计,2019(22):120 − 122. [WANG Jinxing, TAN Peng, LI Guangming, et al. Daily average rainfall calculation of Kenya[J]. Construction & Design for Engineering,2019(22):120 − 122. (in Chinese with English abstract)
[33] BAKER B H, WOHLENBERG J. Structure and evolution of the Kenya rift valley[J]. Nature,1971,229(5286):538 − 542. doi: 10.1038/229538a0