中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于FLOW-3D的泥石流龙头运动过程模拟研究

罗超鹏, 常鸣, 武彬彬, 刘沛源, 余波. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报, 2022, 33(6): 53-62. doi: 10.16031/j.cnki.issn.1003-8035.202107005
引用本文: 罗超鹏, 常鸣, 武彬彬, 刘沛源, 余波. 基于FLOW-3D的泥石流龙头运动过程模拟研究[J]. 中国地质灾害与防治学报, 2022, 33(6): 53-62. doi: 10.16031/j.cnki.issn.1003-8035.202107005
LUO Chaopeng, CHANG Ming, WU Binbin, LIU Peiyuan, YU Bo. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53-62. doi: 10.16031/j.cnki.issn.1003-8035.202107005
Citation: LUO Chaopeng, CHANG Ming, WU Binbin, LIU Peiyuan, YU Bo. Simulation of debris flow head movement process in mountainous area based on FLOW-3D[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 53-62. doi: 10.16031/j.cnki.issn.1003-8035.202107005

基于FLOW-3D的泥石流龙头运动过程模拟研究

  • 基金项目: 国家自然科学基金项目(42077245;41521002);四川省科技厅重点研发计划(2020YFS0352;2020YFS0387)
详细信息
    作者简介: 罗超鹏(1997-),男,硕士,主要从事工程地质与地质灾害防治方面的研究。E-mail:luochaopeng@stu.cdut.edu.cn
    通讯作者: 常 鸣(1985-),男,博士,副教授,主要从事泥石流防灾减灾方面及遥感与GIS应用的工作。E-mail:changmxq@126. com
  • 中图分类号: P642.23

Simulation of debris flow head movement process in mountainous area based on FLOW-3D

More Information
  • 由于2020年10月3日四川省阿坝州理县米亚罗镇突发暴雨,二经里沟暴发了泥石流,损坏沟口的高速公路,并堵塞河道。为了探索泥石流龙头运动特征,选取二经里沟为研究对象,通过调查分析得到泥石流物源分布及规模、沟道形态等特征,采用FLOW-3D数值模拟方法对该泥石流的运动特征进行分析。依据泥石流运动过程的不同特征,将全过程划分为物源汇集、运动特征突变、持续发展、泥沙堆积4个阶段,经验证模拟精度达88.98%。结合泥石流流动速度和堆积深度计算其强度指数,将其划分为4个等级并绘制强度分布图,其中极高强度区占2.4%,高强度区占5.1%,中强度区占13.6%,低强度区占78.9%。并通过三维建模在沟道拟设拦挡坝,模拟分析其对泥石流的减灾效果,为今后防治工程的修建提供科学依据。

  • 加载中
  • 图 1  二经里沟流域概况图

    Figure 1. 

    图 2  沟道地形地貌以及典型物源照片

    Figure 2. 

    图 3  泥石流暴发期间降雨统计

    Figure 3. 

    图 4  二经里沟各样品级配曲线

    Figure 4. 

    图 5  二经里沟地形及物源三维模型示意图

    Figure 5. 

    图 6  二经里沟泥石流堆积深度模拟结果

    Figure 6. 

    图 7  二经里沟泥石流流动速度模拟结果

    Figure 7. 

    图 8  二经里沟模拟结果验证

    Figure 8. 

    图 9  二经里沟泥石流强度空间分布图

    Figure 9. 

    图 10  拦挡坝作用下泥石流堆积深度模拟结果

    Figure 10. 

    表 1  二经里沟特征控制参数

    Table 1.  Main parameters of numerical simulation of Erjingli gully

    参数项数值
    临界体积分数0.49
    最大体积分数0.52
    最小体积分数0.09
    泥石流容重/(kg·cm−31820
    沟道表面粗糙系数0.18
    松散物质的平均粒径/mm10.1
    松散固体材料的重度/(kg·cm−32800
    松散固体材料内休止角/(°)32
    下载: 导出CSV

    表 2  二经里沟物源面积、平均厚度及体积

    Table 2.  Provenance area and average thickness of Erjingli gully

    物源编号12345678
    面积/m21212.52969.44181.2633.15805.710730.24008.64485.6
    平均厚度/m1.691.300.870.804.785.464.374.50
    体积/m320523869365450427751585861751820185
    下载: 导出CSV

    表 3  模拟边界条件设定结果

    Table 3.  Boundary condition setting results of numerical simulation

    网格序号XminXmaxYminYmaxZminZmax
    1SCSCWC
    2OCSCWS
    3SCCOWS
    4CCSCWS
    5COSOWS
    6SOCCWS
    注:C为连续边界;O为出流边界;S为对称边界;W为壁面边界。
    下载: 导出CSV

    表 4  模拟结果与野外实测对比验证

    Table 4.  The comparation of simulated results and field measurements

    模拟参数实测值/m2模拟值/m 2重叠区/m 2精度/%
    模拟结果8015.83 9500.41 7765.05 88.98
    下载: 导出CSV
  • [1]

    周伟,唐川. 汶川震区暴雨泥石流发生的降雨阈值[J]. 水科学进展,2013,24(6):786 − 793. [ZHOU Wei,TANG Chuan. Rainfall thresholds for debris flows occurrence in the Wenchuan earthquake area[J]. Advances in Water Science,2013,24(6):786 − 793. (in Chinese with English abstract)

    [2]

    D’ANIELLO A,COZZOLINO L,CIMORELLI L,et al. A numerical model for the simulation of debris flow triggering,propagation and arrest[J]. Natural Hazards,2015,75(2):1403 − 1433. doi: 10.1007/s11069-014-1389-8

    [3]

    CHANG M,LIU Y,ZHOU C,et al. Hazard assessment of a catastrophic mine waste debris flow of Hou gully,Shimian,China[J]. Engineering Geology,2020,275:105733. doi: 10.1016/j.enggeo.2020.105733

    [4]

    乔建平,王萌,吴彩燕,等. 汶川地震扰动区小流域滑坡泥石流风险评估—以都江堰白沙河流域为例[J]. 中国地质灾害与防治学报,2018,29(4):1 − 9. [QIAO Jianping,WANG Meng,WU Caiyan,et al. Landslide and debris flow risk assessment for small water sheels in the Wenchuan earthquake disturbance area:Taking the Baishahe River basin in Dujiangyan as an example[J]. The Chinese Journal of Geological Hazard and Control,2018,29(4):1 − 9. (in Chinese with English abstract)

    [5]

    王锐. 基于GIS和Logistic回归模型的降雨型滑坡易发性研究[D]. 杭州: 浙江大学, 2018

    WANG Rui. GIS-based logistic regression nodel for rainfall-induced landslide susceptibility assessment[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)

    [6]

    徐泳,孙其诚,张凌,等. 颗粒离散元法研究进展[J]. 力学进展,2003,33(2):251 − 260. [XU Yong,SUN Qicheng,ZHANG Ling,et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics,2003,33(2):251 − 260. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0992.2003.02.010

    [7]

    孙其诚,王光谦. 颗粒流动力学及其离散模型评述[J]. 力学进展,2008,38(1):87 − 100. [SUN Qicheng,WANG Guangqian. Review on granular flow dynamics and its discrete element method[J]. Advances in Mechanics,2008,38(1):87 − 100. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0992.2008.01.006

    [8]

    缪吉伦,陈景秋,张永祥,等. 库岸滑坡涌浪二维光滑粒子动力学数值模拟[J]. 水土保持通报,2013,33(3):175 − 179. [MIAO Jilun,CHEN Jingqiu,ZHANG Yongxiang,et al. Numerical simulation of impulsive wave generated by landslide on reservoir bank using two-dimensional smoothed particle hydrodynamics method[J]. Bulletin of Soil and Water Conservation,2013,33(3):175 − 179. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2013.03.008

    [9]

    HUANG Y J,NYDAL O J. Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows[J]. Theoretical and Applied Mechanics Letters,2012,2(1):012002. doi: 10.1063/2.1201202

    [10]

    王沁,姚令侃. 格子Boltzmann方法及其在泥石流堆积研究中的应用[J]. 灾害学,2007,22(3):1 − 5. [WANG Qin,YAO Lingkan. Lattice boltzmann method and its application in the study on deposition of debris flow[J]. Journal of Catastrophology,2007,22(3):1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2007.03.001

    [11]

    周公旦,孙其诚,崔鹏. 泥石流颗粒物质分选机理和效应[J]. 四川大学学报(工程科学版),2013,45(1):28 − 36. [ZHOU Gongdan,SUN Qicheng,CUI Peng. Study on the mechanisms of solids segregation in granular debris flows[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):28 − 36. (in Chinese with English abstract)

    [12]

    BEGUERÍA S,VAN ASCH T W J,MALET J P,et al. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain[J]. Natural Hazards and Earth System Sciences,2009,9(6):1897 − 1909. doi: 10.5194/nhess-9-1897-2009

    [13]

    CHRISTEN M,KOWALSKI J,BARTELT P. RAMMS:Numerical simulation of dense snow avalanches in three-dimensional terrain[J]. Cold Regions Science and Technology,2010,63(1/2):1 − 14.

    [14]

    HE S M,LI D X,WU Y,et al. Study on the rainfall and aftershock threshold for debris flow of post-earthquake[J]. Journal of Mountain Science,2011,8(5):750 − 756. doi: 10.1007/s11629-011-2046-2

    [15]

    CHANG M,TANG C,VAN ASCH T W J,et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area,South West China[J]. Landslides,2017,14(5):1783 − 1792. doi: 10.1007/s10346-017-0824-9

    [16]

    NOCENTINI M,TOFANI V,GIGLI G,et al. Modeling debris flows in volcanic terrains for hazard mapping:the case study of Ischia Island (Italy)[J]. Landslides,2015,12(5):831 − 846. doi: 10.1007/s10346-014-0524-7

    [17]

    OUYANG C J,WANG Z W,AN H C,et al. An example of a hazard and risk assessment for debris flows—A case study of Niwan Gully,Wudu,China[J]. Engineering Geology,2019,263:105351. doi: 10.1016/j.enggeo.2019.105351

    [18]

    HORTON A J,HALES T C,OUYANG C J,et al. Identifying post-earthquake debris flow hazard using Massflow[J]. Engineering Geology,2019,258:105134. doi: 10.1016/j.enggeo.2019.05.011

    [19]

    TRUJILLO-VELA M G,GALINDO-TORRES S A,ZHANG Xue,et al. Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows[J]. Computers and Geotechnics,2020,125:103669. doi: 10.1016/j.compgeo.2020.103669

    [20]

    LIU W,YANG Z J,HE S M. Modeling the landslide-generated debris flow from formation to propagation and Run-out by considering the effect of vegetation[J]. Landslides,2021,18(1):43 − 58. doi: 10.1007/s10346-020-01478-4

    [21]

    崔鹏,陈晓清,程尊兰,等. 西藏泥石流滑坡监测与防治[J]. 自然杂志,2010,32(1):19 − 25. [CUI Peng,CHEN Xiaoqing,CHENG Zunlan,et al. Monitoring and prevention of debris-flows and landslides in Tibet[J]. Chinese Journal of Nature,2010,32(1):19 − 25. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-9608.2010.01.005

    [22]

    熊江,唐川,龚凌枫,等. 强震区泥石流物源演化指标选取及规律分析[J]. 水土保持研究,2020,27(1):360 − 365. [XIONG Jiang,TANG Chuan,GONG Lingfeng,et al. Evolution indexes selecting and laws analyzing of debris flow source in strong earthquake area[J]. Research of Soil and Water Conservation,2020,27(1):360 − 365. (in Chinese with English abstract)

    [23]

    CHEN N S,YANG C L,ZHOU W,et al. The critical rainfall characteristics for torrents and debris flows in the Wenchuan earthquake stricken area[J]. Journal of Mountain Science,2009,6(4):362 − 372. doi: 10.1007/s11629-009-1064-9

    [24]

    SOULSBY R. Dynamics of marine sands[M]. Thomas Telford Ltd, 1998.

    [25]

    方群生,唐川,程霄,等. 汶川震区泥石流流域内滑坡物源量计算方法探讨[J]. 水利学报,2015,46(11):1298 − 1304. [FANG Qunsheng,TANG Chuan,CHENG Xiao,et al. An calculation method for predicting landslides volumes of the debris flows in the Wenchuan earthquake area[J]. Journal of Hydraulic Engineering,2015,46(11):1298 − 1304. (in Chinese with English abstract)

    [26]

    余斌. 粘性泥石流的平均运动速度研究[J]. 地球科学进展,2008,23(5):524 − 532. [YU Bin. Study on the mean velocity of viscous debris flows[J]. Advances in Earth Science,2008,23(5):524 − 532. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2008.05.013

    [27]

    FUCHS S,HEISS K,HÜBL J. Towards an empirical vulnerability function for use in debris flow risk assessment[J]. Natural Hazards and Earth System Sciences,2007,7(5):495 − 506. doi: 10.5194/nhess-7-495-2007

    [28]

    JAKOB M,STEIN D,ULMI M. Vulnerability of buildings to debris flow impact[J]. Natural Hazards,2012,60(2):241 − 261. doi: 10.1007/s11069-011-0007-2

  • 加载中

(10)

(4)

计量
  • 文章访问数:  2465
  • PDF下载数:  98
  • 施引文献:  0
出版历程
收稿日期:  2021-07-10
修回日期:  2022-09-23
录用日期:  2022-09-23
刊出日期:  2022-12-25

目录