中国地质环境监测院
中国地质灾害防治工程行业协会
主办

贺兰山苏峪口泥石流物源启动模型试验分析

胡艳香, 朱厚影, 陈昊, 薛凯喜, 韩静云, 梁海安. 贺兰山苏峪口泥石流物源启动模型试验分析[J]. 中国地质灾害与防治学报, 2022, 33(6): 44-52. doi: 10.16031/j.cnki.issn.1003-8035.202109023
引用本文: 胡艳香, 朱厚影, 陈昊, 薛凯喜, 韩静云, 梁海安. 贺兰山苏峪口泥石流物源启动模型试验分析[J]. 中国地质灾害与防治学报, 2022, 33(6): 44-52. doi: 10.16031/j.cnki.issn.1003-8035.202109023
HU Yanxiang, ZHU Houying, CHEN Hao, XUE Kaixi, HAN Jingyun, LIANG Haian. Model test of debris flow source initiation mechanism in Suyu valley of Helan Mountain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 44-52. doi: 10.16031/j.cnki.issn.1003-8035.202109023
Citation: HU Yanxiang, ZHU Houying, CHEN Hao, XUE Kaixi, HAN Jingyun, LIANG Haian. Model test of debris flow source initiation mechanism in Suyu valley of Helan Mountain[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 44-52. doi: 10.16031/j.cnki.issn.1003-8035.202109023

贺兰山苏峪口泥石流物源启动模型试验分析

  • 基金项目: 宁夏回族自治区自然科学基金(2020AAC03222);国家自然科学基金(42167024)
详细信息
    作者简介: 胡艳香(1982-),女,硕士,讲师,主要从事岩土工程相关领域的教学科研工作。E-mail:xkx1257@foxmail.com
    通讯作者: 韩静云(1978-),男,博士,主要从事土木工程相关领域的教学科研工作。E-mail:hjyzyj2005@163.com
  • 中图分类号: P642.23

Model test of debris flow source initiation mechanism in Suyu valley of Helan Mountain

More Information
  • 文中通过模型试验,对试验现象中泥石流启动模式和堆积特征进行观测,研究了贺兰山苏峪口泥石流的形成受沟床坡度、土体含水率、粗颗粒含量三个因素影响的状况,初步探讨了贺兰山东麓泥石流在三个因素影响下的变化情况,试验结果表明:三个因素对泥石流影响由大到小分别是粗颗粒含量,沟床坡度、土体含水率;且粗颗粒含量越低、沟床坡度越大、含水率越高越容易发育泥石流。细颗粒含量较高时,泥石流的类型为沟道侵蚀型,粗颗粒含量较高时,泥石流类型为堵溃型。

  • 加载中
  • 图 1  苏峪口流域周边泥石流沟谷分布

    Figure 1. 

    图 2  试验土样颗粒级配曲线

    Figure 2. 

    图 3  试验装置简图及实物图

    Figure 3. 

    图 4  粗颗粒含量60%泥石流发育特征

    Figure 4. 

    图 5  物源粗颗粒高于60%泥石流启动特征

    Figure 5. 

    图 6  物源扰动后形成的粗化层

    Figure 6. 

    图 7  粗颗粒含量高于60 %的物源各地形条件下堆积特征

    Figure 7. 

    图 8  粗颗粒含量60 %的物源各地形条件下堆积特征

    Figure 8. 

    图 9  同一因素不同水平对物源冲出量的影响

    Figure 9. 

    表 1  模型试验工况设计

    Table 1.  Model test condition design

    工况沟床坡度/(°)土体含水率/%粗颗粒含量/%
    10天然含水率60
    10半饱和含水率80
    10饱和含水率70
    15天然含水率80
    15半饱和含水率70
    15饱和含水率60
    5天然含水率70
    5半饱和含水率60
    5饱和含水率80
    下载: 导出CSV

    表 2  试验数据正交分析表

    Table 2.  The test data orthogonal analysis table

    数据沟床坡度
    /(°)
    土体含水率
    /%
    粗颗粒含量
    /%
    误差项物源冲出总量/
    (10−3 m3
    i18.8037.3894.3750.88161.67
    i49.4846.2053.4052.09
    i93.3978.0913.9058.70
    6.2712.4631.4616.96
    16.4915.4017.8017.36
    31.1326.034.6319.57
    Ri24.8613.5726.822.61
    注:iii表示某因素三个水平下的物源冲出量;表示的平均值,Ri表示极差。
    下载: 导出CSV

    表 3  泥石流影响因素方差分析表

    Table 3.  The anovary table of the factors affected by mudslides

    来源自由度Adj SSAdj MSFP
    沟床坡度20.0008880.000444110.000.009
    土体含水率20.0003060.00015337.880.026
    粗颗粒含量20.0010260.000513127.150.008
    误差20.0000080.000004
    合计80.002228
    下载: 导出CSV
  • [1]

    IVERSON R M,GEORGE D L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2014,470(2170):20130819.

    [2]

    IVERSON R M,MAJOR J J. Groundwater seepage vectors and the potential for hillslope failure and debris flow mobilization[J]. Water Resources Research,1986,22(11):1543 − 1548. doi: 10.1029/WR022i011p01543

    [3]

    GEORGE D L,IVERSON R M. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2014,470(2170):20130820.

    [4]

    TAKAHASHI T. Debris flow[J]. Annual Review of Fluid Mechanics,1981,13:57 − 77. doi: 10.1146/annurev.fl.13.010181.000421

    [5]

    胡明鉴,汪稔. 蒋家沟流域暴雨滑坡泥石流共生关系试验研究[J]. 岩石力学与工程学报,2003,22(5):824 − 828. [HU Mingjian,WANG Ren. Testing study on the correlation among landslide,debris flow and rainfall in Jiangjia valley[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(5):824 − 828. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.05.025

    [6]

    陈中学,汪稔,胡明鉴,等. 云南东川蒋家沟泥石流形成内因初探[J]. 岩土力学,2009,30(10):3053 − 3056. [CHEN Zhongxue,WANG Ren,HU Mingjian,et al. Study of internal factors for debris flow occurrence in Jiangjia ravine,Dongchun of Yunnan[J]. Rock and Soil Mechanics,2009,30(10):3053 − 3056. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2009.10.029

    [7]

    陈中学,汪稔,胡明鉴,等. 黏土颗粒含量对蒋家沟泥石流启动影响分析[J]. 岩土力学,2010,31(7):2197 − 2201. [CHEN Zhongxue,WANG Ren,HU Mingjian,et al. Study of content of clay particles for debris flow occurrence in Jiangjia Ravine[J]. Rock and Soil Mechanics,2010,31(7):2197 − 2201. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2010.07.029

    [8]

    胡明鉴, 汪稔, 陈中学, 等. 泥石流启动过程PFC数值模拟[J]. 岩土力学, 2010, 31(增刊 1): 394 − 397

    HU Mingjian, WANG Ren, CHEN Zhongxue, et al. Initiation process simulation of debris deposit based on particle flow code[J]. Rock and Soil Mechanics, 2010, 31(Sup 1): 394 − 397. (in Chinese with English abstract)

    [9]

    王志兵,李凯,汪稔,等. 细粒含量对泥石流斜坡失稳模式与规模的影响[J]. 水利水电科技进展,2016,36(2):35 − 41. [WANG Zhibing,LI Kai,WANG Ren,et al. Impact of fine particle content on mode and scale of slope instability of debris flow[J]. Advances in Science and Technology of Water Resources,2016,36(2):35 − 41. (in Chinese with English abstract)

    [10]

    程尊兰,党超,刘晶晶,等. 藏东南部泥石流堵河试验研究[J]. 地学前缘,2007,14(6):181 − 187. [CHENG Zunlan,DANG Chao,LIU Jingjing,et al. Experiments of debris flow damming in Southeast Tibet[J]. Earth Science Frontiers,2007,14(6):181 − 187. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.06.023

    [11]

    程尊兰,朱平一,宫怡文. 典型冰湖溃决型泥石流形成机制分析[J]. 山地学报,2003,21(6):716 − 720. [CHENG Zunlan,ZHU Pingyi,GONG Yiwen. Typical debris flow triggered by ice-lake break[J]. Journal of Mountain Research,2003,21(6):716 − 720. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2003.06.013

    [12]

    胡凯衡,崔鹏,李浦. 泥石流动力学模型与数值模拟[J]. 自然杂志,2014,36(5):313 − 318. [HU Kaiheng,CUI Peng,LI Pu. Debris flow dynamic models and numerical computation[J]. Chinese Journal of Nature,2014,36(5):313 − 318. (in Chinese with English abstract)

    [13]

    李明威,唐川,陈明,等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182 − 190. [LI Mingwei,TANG Chuan,CHEN Ming,et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan County in the Wenchuan earthquake zone[J]. Hydrogeology & Engineering Geology,2020,47(3):182 − 190. (in Chinese with English abstract)

    [14]

    樊圆圆,宋玲,魏学利. 基于水槽试验的冰碛土泥石流启动机理分析:以中巴公路艾尔库然沟为例[J]. 中国地质灾害与防治学报,2021,32(1):1 − 9. [FAN Yuanyuan,SONG Ling,WEI Xueli. Analysis of the start-up mechanism of moraine debris flow based on flume test:A case study of the Aierkuran Gully along the Sino-Pakistan highway[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):1 − 9. (in Chinese with English abstract)

    [15]

    王硕楠. 沟道泥石流堆积体复活启动机制研究—以栾川县柿树沟为例[D]. 武汉: 中国地质大学, 2015

    WANG Shuonan. Study on the revival start mechanism of debris flow fan: Take Luanchuan Shishu gully as an example[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract)

    [16]

    周小军, 崔鹏, 贾世涛, 等. 基于正交设计的土体细颗粒迁移积聚水槽实验研究[J]. 四川大学学报(工程科学版), 2012, 44(增刊 1): 83 − 88

    ZHOU Xiaojun, CUI Peng, JIA Shitao, et al. Flume test study on the movement of fine grains based on orthogonal design[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(Sup 1): 83 − 88. (in Chinese with English abstract)

    [17]

    王飞. 泥石流物源降雨启动试验及三维颗粒流模拟研究[D]. 长春: 吉林大学, 2018

    WANG Fei. Study on rainfall initiation experiment for debris flow materials and initiation process simulation with PFC3D[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract)

    [18]

    马秋娟,尹红霞,刘亚峰,等. 太行山地区水石流起动及发展的模型研究[J]. 人民黄河,2016,38(11):5 − 8. [MA Qiujuan,YIN Hongxia,LIU Yafeng,et al. Model study on catastrophe characteristics for initiation debris-flows in Taihang mountain area[J]. Yellow River,2016,38(11):5 − 8. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2016.11.002

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1298
  • PDF下载数:  61
  • 施引文献:  0
出版历程
收稿日期:  2021-08-07
修回日期:  2022-02-14
录用日期:  2022-10-09
刊出日期:  2022-12-25

目录