中国地质环境监测院
中国地质灾害防治工程行业协会
主办

深部锚固节理岩体蠕变-疲劳破坏能量演化规律分析

宋洋, 杨辉, 李永启, 范波. 深部锚固节理岩体蠕变-疲劳破坏能量演化规律分析[J]. 中国地质灾害与防治学报, 2022, 33(4): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202107018
引用本文: 宋洋, 杨辉, 李永启, 范波. 深部锚固节理岩体蠕变-疲劳破坏能量演化规律分析[J]. 中国地质灾害与防治学报, 2022, 33(4): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202107018
SONG Yang, YANG Hui, LI Yongqi, FAN Bo. Analysis on the evolution law of creep-fatigue failure energy of deep anchored jointed rock mass[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202107018
Citation: SONG Yang, YANG Hui, LI Yongqi, FAN Bo. Analysis on the evolution law of creep-fatigue failure energy of deep anchored jointed rock mass[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 98-105. doi: 10.16031/j.cnki.issn.1003-8035.202107018

深部锚固节理岩体蠕变-疲劳破坏能量演化规律分析

  • 基金项目: 国家自然科学基金项目(51974146);辽宁省自然科学基金(2019-ZD-0042);辽宁省高等学校创新人才支持计划资助项目(21-1071);辽宁工程技术大学学科创新团队资助项目(LNTU20TD08)
详细信息
    作者简介: 宋 洋(1982-),男,辽宁丹东人,副教授,博士,主要从事岩土与地下工程方面教学与研究。E-mail:lgdsongyang@163.com
    通讯作者: 杨 辉(1993-),男,河南郑州人,硕士研究生,主要从事桥梁与隧道方面的研究。E-mail:826376530@qq.com
  • 中图分类号: TU452

Analysis on the evolution law of creep-fatigue failure energy of deep anchored jointed rock mass

More Information
  • 为探究深部岩体在爆破、开挖等扰动荷载下的力学特性,开展锚固岩体在蠕变-疲劳荷载下的室内试验,并进一步探究其能量演化规律。结果表明:(1)在疲劳荷载作用下,加锚节理岩体比无锚条件下的滞回环面积小,在施加预应力时,其滞回环面积又大幅度减少,说明加锚预应力能有效降低其能量损耗;(2)岩石强度越高,其滞回环面积越小,对应的能量耗散越小,反之能量耗散大;(3)对比不同加卸载速率可知:在每一级循环荷载过程中,加卸载速率越大其对应的应变值、切线斜率就越大。考虑加卸载速率对节理岩体劣化作用,依据应变等价原理,得出节理岩体峰值损伤本构方程,并通过试验验证模型的准确性,为深部岩体结构支护提供思路。

  • 加载中
  • 图 1  试件示意图

    Figure 1. 

    图 2  剪切装置

    Figure 2. 

    图 3  加载路径示意图

    Figure 3. 

    图 4  不同工况下岩石应力-应变曲线

    Figure 4. 

    图 5  不同加卸载速率下应力-应变示意图

    Figure 5. 

    图 6  疲劳荷载作用下能量示意图

    Figure 6. 

    图 7  不同岩性能量值

    Figure 7. 

    图 8  节理岩体耗能比随应变演化规律示意图

    Figure 8. 

    图 9  不同加卸载速率下的应变演化规律示意图

    Figure 9. 

    图 10  试验曲线与损伤本构方程曲线比较

    Figure 10. 

    表 1  不同岩性的能量值

    Table 1.  Energy values of different lithologies

    岩性工况岩石吸收的能量弹性应变能消耗能耗能比
    花岗岩无锚0.07560.02050.05510.729
    加锚0.11520.07580.03940.342
    预应力0.19030.12080.05950.313
    大理岩无锚0.06040.01980.04060.672
    加锚0.09550.05430.04120.431
    预应力0.17050.10280.06770.397
    砂岩无锚0.04630.01380.03250.702
    加锚0.09630.04590.05040.523
    预应力0.16200.08660.07540.465
    下载: 导出CSV

    表 2  拟合曲线的相关参数

    Table 2.  Related parameters of fitting curve

    岩样加卸载速率/(N·s−1abcdɛfR2
    砂岩207.801.8980.9983−0.00550.0050.9760.3850.946
    3021.592.4040.9985−0.0330.0080.9520.3200.956
    4014.412.1990.99850.02480.0120.9680.2950.967
    504.461.7370.99960.03640.0140.9720.2850.973
    大理岩2010.381.9340.9982−0.00350.0060.9650.4100.972
    3023.922.2740.9991−0.0280.0090.9580.3590.981
    4015.792.1070.99870.02930.0120.9670.2970.964
    花岗岩506.351.8250.99950.04150.0150.9570.2830.953
    2011.951.7460.9986−0.00470.0080.9640.3950.943
    3025.782.5240.9987−0.0290.0100.9810.3740.946
    4017.312.1260.99850.03170.0120.9720.3650.975
    507.861.8090.99980.04340.0150.9610.2990.954
    下载: 导出CSV
  • [1]

    陈旭光, 张强勇. 岩石剪切破坏过程的能量耗散和释放研究[J]. 采矿与安全工程学报,2010,27(2):179 − 184. [CHEN Xuguang, ZHANG Qiangyong. Research on the energy dissipation and release in the process of rock shear failure[J]. Journal of Mining & Safety Engineering,2010,27(2):179 − 184. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-3363.2010.02.008

    [2]

    陈子全, 何川, 吴迪, 等. 深埋碳质千枚岩力学特性及其能量损伤演化机制[J]. 岩土力学,2018,39(2):445 − 456. [CHEN Ziquan, HE Chuan, WU Di, et al. Mechanical properties and energy damage evolution mechanism of deep-buried carbonaceous phyllite[J]. Rock and Soil Mechanics,2018,39(2):445 − 456. (in Chinese with English abstract)

    [3]

    宋洋, 任萌, 张维东, 等. 非贯通非共面凝灰岩节理岩体各向异性及其能量特征分析[J]. 中国地质灾害与防治学报,2019,30(1):126 − 132. [SONG Yang, REN Meng, ZHANG Weidong, et al. Analysis of anisotropy and energy characteristics of tuffs with non-penetrating joints[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):126 − 132. (in Chinese with English abstract)

    [4]

    李安润, 邓辉, 王红娟, 等. 水-岩作用下粉砂质泥岩含水损伤本构模型[J]. 水文地质工程地质,2021,48(2):106 − 113. [LI Anrun, DENG Hui, WANG Hongjuan, et al. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology,2021,48(2):106 − 113. (in Chinese with English abstract)

    [5]

    辛亚军, 李梦远. 岩石分级加载蠕变的能量耗散与变形机制研究[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2883 − 2897

    XIN Yajun, LI Mengyuan. Study on deformation mechanism and energy dissipation of rock creep under step loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 2883 − 2897. (in Chinese with English abstract)

    [6]

    邓华锋, 胡玉, 李建林, 等. 循环加卸载过程中砂岩能量耗散演化规律[J]. 岩石力学与工程学报, 2016, 35(增刊1): 2869 − 2875

    DENG Huafeng, HU Yu, LI Jianlin, et al. The evolution of sandstone energy dissipation under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 2869 − 2875. (in Chinese with English abstract)

    [7]

    翟明磊, 郭保华, 李冰洋, 等. 岩石节理分级剪切加载-蠕变-卸载的能量与变形特征[J]. 岩土力学,2018,39(8):2865 − 2872. [ZHAI Minglei, GUO Baohua, LI Bingyang, et al. Energy and deformation characteristics of rock joints under multi-stage shear loading-creep-unloading conditions[J]. Rock and Soil Mechanics,2018,39(8):2865 − 2872. (in Chinese with English abstract)

    [8]

    FENG J J, WANG E Y, CHEN X, et al. Energy dissipation rate: an indicator of coal deformation and failure under static and dynamic compressive loads[J]. International Journal of Mining Science and Technology,2018,28(3):397 − 406. doi: 10.1016/j.ijmst.2017.11.006

    [9]

    CHEN Z Q, HE C, WU D, et al. Fracture evolution and energy mechanism of deep-buried carbonaceous slate[J]. Acta Geotechnica,2017,12(6):1243 − 1260. doi: 10.1007/s11440-017-0606-5

    [10]

    CHEN Z Q, HE C, MA G Y, et al. Energy damage evolution mechanism of rock and its application to brittleness evaluation[J]. Rock Mechanics and Rock Engineering,2019,52(4):1265 − 1274. doi: 10.1007/s00603-018-1681-0

    [11]

    MENG Q B, ZHANG M W, ZHANG Z Z, et al. Experimental research on rock energy evolution under uniaxial cyclic loading and unloading compression[J]. Geotechnical Testing Journal,2018,41(4):20170233. doi: 10.1520/GTJ20170233

    [12]

    LI D Y, SUN Z, XIE T, et al. Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths[J]. Engineering Geology,2017,228:270 − 281. doi: 10.1016/j.enggeo.2017.08.006

    [13]

    谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报,2004,23(21):3565 − 3570. [XIE Heping, PENG Ruidong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3565 − 3570. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.21.001

    [14]

    KACHANOV M. On the time to failure under creep conditions[J]. Izv An sssr Otd Tekhn Nauk,1958,8(2):26 − 31.

    [15]

    JEAN L. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology,1985,107(1):83 − 89. doi: 10.1115/1.3225775

    [16]

    WEN T, TANG H M, MA J W, et al. Energy analysis of the deformation and failure process of sandstone and damage constitutive model[J]. KSCE Journal of Civil Engineering,2019,23(2):513 − 524. doi: 10.1007/s12205-018-0789-9

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1173
  • PDF下载数:  125
  • 施引文献:  0
出版历程
收稿日期:  2021-07-21
修回日期:  2021-09-14
录用日期:  2021-09-22
刊出日期:  2022-08-25

目录