Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng, Guizhou
-
摘要:
在贵州岩溶山区开展地质灾害风险调查时,由于局部存在高差较大的复杂山体,传统的地面调查手段往往具有局限性。为有效地识别及测量潜在的高位隐蔽性地质灾害隐患,采用无人机载LiDAR和地面三维激光扫描的方法,通过“俯视”数据与“正视”数据相融合,可完整、精确地获取崩塌危岩带的高精度点云及三维模型等数据。以贵州省水城区鸡场镇独家寨崩塌为例,通过野外数据采集-原始点云处理-不同数据融合-整体着色修复等步骤,最后得到研究区高精度三维模型数据,在此基础上对岩体结构和裂隙进行提取,解译出层面和两组节理裂隙产状,进而有效识别危岩体的空间分布,并基于网格划分方法计算出危岩带的规模约6.6×104 m3。结果表明无人机载LiDAR与地面三维激光扫描相融合的方法可优势互补,具有可操作性强、精度高、识别准等特点,可有效地获取解译并识别危岩体的分布及规模,为后续稳定性分析及风险评价提供基础。
Abstract:In karst mountainous area of Guizhou, in China, traditional ground survey methods often have limitations due to the existence of complex mountains with large elevation differences. In order to effectively identify and measure potential high-order position and hidden geological hazards, the technology method of integrating unmanned aerial vehicle LiDAR with ground 3D laser scanning is adopted. Through the fusion of “vertical view” data and “front view” data, the high-precision point cloud and 3D model data of the collapse can be obtained completely and accurately. This study takes the collapse of Dujiazhai in Jichang Town, Shuicheng District, Guizhou Province as an example, and finally obtains high-precision 3D model data in the study area through the steps of field data collection, original point cloud preprocessing, different data fusion, and overall coloring repair. Based on the 3d model data, the rock mass structure and fractures were extracted, and the stratification plane and two groups of joint fractures were interpreted, in order to effectively identify the spatial distribution of the dangerous rock mass. The size of the dangerous rock belt was calculated to be about 66,000 m3 based on the grid division method. The results show that the technical method of the integration of UAV-borne LiDAR and ground 3D laser scanning can complement each other with advantages, and has the characteristics of strong operability, high accuracy and accurate identification. It can effectively obtain the distribution and scale of dangerous rock mass, provide a basis for subsequent stability analysis and risk assessment.
-
Key words:
- airborne LiDAR /
- 3D laser scanning /
- geological hazard /
- risk investigation /
- 3D model /
- Guizhou
-
表 1 结构面特征表
Table 1. Structural plane characteristics
类型 产状 长度/m 张开度/cm 间距/m 特征 层理 315°∠16° 10~15 闭合 0.3~1.1 − 节理J1 35°~45°∠65°~78° 5~8 0.2~0.6 0.3~2.5 无填充 节理J2 130°~155°∠75°~89° 4~9 0.3~0.6 0.2~1.3 无填充 -
[1] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang, DONG Xiujun, LI Weile. Integrated Space-Air-Ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)
[2] 谭德军, 尹晨沣. 高植被覆盖复杂山区机载激光LiDAR点云分类与处理[J]. 地球科学前沿,2020,10(7):616 − 621. [TAN Dejun, YIN Chenfeng. Classification and processing of airborne laser LiDAR point clouds in complex mountainous areas with high vegetation cover[J]. Advances in Geosciences,2020,10(7):616 − 621. (in Chinese with English abstract) doi: 10.12677/AG.2020.107060
[3] 谭德军, 王勇, 任世聪. 机载激光雷达技术在崩塌调查识别中的应用—以奉节县李子崖危岩为例[J]. 地球科学前沿,2020,10(7):648 − 658. [TAN Dejun, WANG Yong, REN Shicong. Application of airborne lidar technology in collapse investigation and identification:A case study of Liziya dangerous rock in Fengjie County[J]. Advances in Geosciences,2020,10(7):648 − 658. (in Chinese with English abstract) doi: 10.12677/AG.2020.107064
[4] 彭艺伟, 董琦, 田冲, 等. 基于机载激光雷达的地质灾害识别关键技术及应用研究[J]. 安全与环境工程,2021,28(6):100 − 108. [PENG Yiwei, DONG Qi, TIAN Chong, et al. Research on key technologies and application of geological hazard identification based on airborne LiDAR[J]. Safety and Environmental Engineering,2021,28(6):100 − 108. (in Chinese with English abstract)
[5] 贾虎军, 王立娟, 范冬丽. 无人机载LiDAR和倾斜摄影技术在地质灾害隐患早期识别中的应用[J]. 中国地质灾害与防治学报,2021,32(2):60 − 65. [JIA Hujun, WANG Lijuan, FAN Dongli. The application of UAV LiDAR and tilt photographyin the early identification of geo-hazards[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):60 − 65. (in Chinese with English abstract)
[6] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版),2021,46(10):1538 − 1547. [GUO Chen, XU Qiang, DONG Xiujun, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University,2021,46(10):1538 − 1547. (in Chinese with English abstract)
[7] 刘小莎, 董秀军, 钱济人, 等. 高植被山区泥石流物源LiDAR遥感精细识别方法研究[J]. 武汉大学学报(信息科学版),2021. [LIU Xiaosha, DONG Xiujun, QIAN Jiren, et al. A weighted radial basis function interpolation method for high accuracy DEM modeling[J]. Geomatics and Information Science of Wuhan University,2021. (in Chinese with English abstract)
[8] 董秀军, 黄润秋. 三维激光扫描测量在汶川地震后都汶公路快速抢通中的应用[J]. 工程地质学报,2008,16(6):774 − 779. [DONG Xiujun, HUANG Runqiu. Application of 3D laser scanner in making DUWEN road travelable in short term after WENCHUAN earthquake[J]. Journal of Engineering Geology,2008,16(6):774 − 779. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.06.007
[9] 谢谟文, 胡嫚, 王立伟. 基于三维激光扫描仪的滑坡表面变形监测方法—以金坪子滑坡为例[J]. 中国地质灾害与防治学报,2013,24(4):85 − 92. [XIE Mowen, HU Man, WANG Liwei. Landslide monitoring by three-dimensional laser scanner:Case study of the displacement detection of the Jinpingzi landslide (Southwest, China)[J]. The Chinese Journal of Geological Hazard and Control,2013,24(4):85 − 92. (in Chinese with English abstract)
[10] 李强, 邓辉, 周毅. 三维激光扫描在矿区地面沉陷变形监测中的应用[J]. 中国地质灾害与防治学报,2014,25(1):119 − 124. [LI Qiang, DENG Hui, ZHOU Yi. Application of 3D laser scanning to the ground subsidence deformation monitoring in mining area[J]. The Chinese Journal of Geological Hazard and Control,2014,25(1):119 − 124. (in Chinese with English abstract)
[11] 陆三福, 熊承仁, 龙露. 三维激光扫描与结构面模拟在地质勘察中的应用[J]. 人民长江,2014,45(12):54 − 58. [LU Sanfu, XIONG Chengren, LONG Lu. Application of 3D laser scanning and structural plane simulation technologies in investigation of rock mass structure[J]. Yangtze River,2014,45(12):54 − 58. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2014.12.016
[12] 舒飞, 蒋小勇, 韩天培. 三维激光扫描技术在地质灾害体测绘生产中的应用[J]. 中国地质灾害与防治学报,2015,26(1):77 − 81. [SHU Fei, JIANG Xiaoyong, HAN Tianpei. Application of 3D laser scanner to surveying and mapping production of the geo-hazard site[J]. The Chinese Journal of Geological Hazard and Control,2015,26(1):77 − 81. (in Chinese with English abstract)
[13] 褚宏亮, 殷跃平, 曹峰, 等. 大型崩滑灾害变形三维激光扫描监测技术研究[J]. 水文地质工程地质,2015,43(3):128 − 134. [CHU Hongliang, YIN Yueping, CAO Feng, et al. Research on deformation monitoring of large collapses and landslides based on 3D laser scanning technology[J]. Hydrogeology & Engineering Geology,2015,43(3):128 − 134. (in Chinese with English abstract)
[14] 王梓龙, 裴向军, 董秀军, 等. 三维激光扫描技术在危岩监测中的应用[J]. 水文地质工程地质,2016,43(1):124 − 129. [WANG Zilong, PEI Xiangjun, DONG Xiujun, et al. Application of a terrestrial laser scanner to the study of rockfall monitoring[J]. Hydrogeology & Engineering Geology,2016,43(1):124 − 129. (in Chinese with English abstract)
[15] 马富贵, 宋元福, 然见多杰, 等. 三维激光扫描技术在地质灾害调查中的应用[J]. 中国地质灾害与防治学报,2017,28(3):101 − 105. [MA Fugui, SONG Yuanfu, RAN Jianduojie, et al. Application of the three-dimensional laser scanning in the investigation of geologichazard[J]. The Chinese Journal of Geological Hazard and Control,2017,28(3):101 − 105. (in Chinese with English abstract)
[16] 薛强, 毕俊擘, 李政国, 等. 三维激光扫描技术在闫家沟滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2018,29(3):108 − 112. [XUE Qiang, BI Junbo, LI Zhengguo, et al. Application of 3D laser scanning technology in deformation monitoring of the Yanjiagou Landslide[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):108 − 112. (in Chinese with English abstract)
[17] 梁玉飞, 裴向军, 崔圣华, 等. 基于地面三维激光点云的滑坡破坏边界岩体结构特征分析[J]. 岩石力学与工程学报,2021,40(6):1209 − 1225. [LIANG Yufei, PEI Xiangjun, CUI Shenghua, et al. Analysis of rock mass structure characteristics of landslide boundaries based on ground 3D laser point cloud[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(6):1209 − 1225. (in Chinese with English abstract)