中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于不同耦合模型的县域滑坡易发性评价对比分析

熊小辉, 汪长林, 白永健, 铁永波, 高延超, 李光辉. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报, 2022, 33(4): 114-124. doi: 10.16031/j.cnki.issn.1003-8035.202202052
引用本文: 熊小辉, 汪长林, 白永健, 铁永波, 高延超, 李光辉. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报, 2022, 33(4): 114-124. doi: 10.16031/j.cnki.issn.1003-8035.202202052
XIONG Xiaohui, WANG Changlin, BAI Yongjian, TIE Yongbo, GAO Yanchao, LI Guanghui. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114-124. doi: 10.16031/j.cnki.issn.1003-8035.202202052
Citation: XIONG Xiaohui, WANG Changlin, BAI Yongjian, TIE Yongbo, GAO Yanchao, LI Guanghui. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114-124. doi: 10.16031/j.cnki.issn.1003-8035.202202052

基于不同耦合模型的县域滑坡易发性评价对比分析

  • 基金项目: 中国地质调查局地质调查项目(DD20190640);国家自然科学基金项目(U20A20110-01)
详细信息
    作者简介: 熊小辉(1987-),男,江西高安人,博士,高级工程师,主要从事基础地质与地质灾害方面研究。E-mail:xiongxiaohui1987@163.com
  • 中图分类号: P642.22

Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province

  • 为有效预测县域滑坡发生的空间概率,探索不同统计学耦合模型滑坡易发性定量评价结果的合理性和精度,以四川省普格县为研究对象。选取坡度、坡向、高程、工程地质岩组、断层和斜坡结构等6项孕灾因子作为评价指标体系,基于信息量模型(I)、确定性系数模型(CF)、证据权模型(WF)、频率比模型(FR)分别与逻辑回归模型(LR)耦合开展滑坡易发性评价。结果表明:各耦合模型评价结果和易发程度区划均是合理的,极高易发区主要分布于则木河、黑水河河谷两侧斜坡带,面积介于129.04~183.43 km2(占比6.77%~9.62%),各模型评价精度依次为WF-LR模型(AUC=0.869)>I-LR模型(AUC=0.868)>CF-LR模型(AUC=0.866)>NFR-LR模型(AUC=0.858)。研究成果可为川西南山区县域滑坡易发性定量评估提供重要参考。

  • 加载中
  • 图 1  研究区及滑坡点分布

    Figure 1. 

    图 2  评价因子分级图

    Figure 2. 

    图 3  不同耦合模型滑坡易发性评价分区图

    Figure 3. 

    图 4  评价模型ROC曲线

    Figure 4. 

    表 1  评价因子分级及I值、CF值、WF值和NFR

    Table 1.  Calculation results of I, CF, WF and NFR values for classification level of each evaluation factor

    评价因子分级分级面积/km2滑坡点/个信息量值(I)确定性系数值(CF)证据权值(WF)归一化评率比值(NFR)
    坡度/(°)0~10190.9017−0.2634−0.2316−0.28880.1837
    10~20497.15780.38890.32220.57240.3527
    20~30620.30770.23210.20710.36670.3015
    30~40438.6120−0.6898−0.4983−0.82860.1199
    40~50138.493−1.7342−0.8235−1.79670.0422
    >5021.540−1.7342−1.0000−1.61180.0000
    坡向237.6117−0.7700−0.5370−0.84360.0582
    北东229.7517−0.2255−0.2019−0.25280.1003
    264.2229−0.0776−0.0747−0.08950.1163
    东南223.00230.09200.08790.10480.1378
    213.81230.08280.07950.09380.1365
    西南228.02220.11850.11180.13580.1415
    西269.04420.40510.33310.49070.1885
    北西241.5422−0.0392−0.0384−0.04470.1209
    高程/m1080~125018.0481.55660.78921.59320.2481
    1250~150073.97602.02840.86852.33850.3977
    1500~1750127.88391.05360.65131.19780.1500
    1750~2000181.76380.79730.54950.93480.1161
    2 000~2250260.21310.23780.21160.28120.0664
    2250~2500277.7410−1.0438−0.6479−1.14860.0184
    >2500967.419−2.7618−0.9368−3.43700.0033
    工程地质岩组软硬相间砂泥岩岩组1012.501370.29280.25380.77900.2852
    坚硬玄武岩岩组244.8620−0.2247−0.2012−0.25380.1700
    坚硬层状灰岩岩组岩、白云质灰岩岩组195.978−0.6951−0.5010−0.75090.1062
    坚硬−半坚硬砂岩组324.8714−1.2006−0.6990−1.33470.0641
    松软岩组90.32160.56500.43160.60350.3745
    软硬相间凝灰岩38.210−1.2006−1.0000−0.98480.0000
    半胶结岩组0.270−1.2006−1.0000−0.98480.0000
    距断层距离/km0~0.5577.041080.57630.43810.98920.4092
    0.5~1372.13440.11050.10470.13930.2568
    1~1.5272.3620−0.2133−0.1921−0.24480.1858
    1.5~3476.6019−0.8907−0.5896−1.07000.0944
    >3208.884−1.4520−0.7659−1.54210.0538
    斜坡结构顺向坡284.78490.48930.38700.60680.2398
    斜向坡513.7646−0.1274−0.1196−0.17060.1294
    横向坡521.1743−0.1973−0.1791−0.26240.1207
    逆向坡252.0022−0.1356−0.1268−0.15470.1284
    块状结构斜坡240.5716−0.4146−0.3394−0.46250.0971
    松散土质斜坡94.72190.66050.48340.71070.2846
    下载: 导出CSV

    表 2  普格县滑坡易发性不同模型评价结果对比(训练集)

    Table 2.  Comparison of landslide susceptibility evaluation results of different models

    评价模型易发性等级面积/km2面积占比/%训练集滑坡点(156个)
    滑坡数量/个占比/%点密度/个/km2
    I-LR极高易发169.898.918051.280.47
    高易发303.2815.905032.050.16
    中易发269.1014.112012.820.07
    低易发1164.7361.0863.850.01
    CF-LR极高易发183.439.628051.280.44
    高易发284.6214.924730.130.17
    中易发233.4212.242113.460.09
    低易发1205.5363.2285.130.01
    WF-LR极高易发168.778.857850.000.46
    高易发302.7815.885132.690.17
    中易发278.7114.622113.460.08
    低易发1156.7460.6663.850.01
    NFR-LR极高易发129.046.776843.590.53
    高易发248.9813.065032.050.20
    中易发519.7627.263119.870.06
    低易发1009.2352.9274.490.01
    下载: 导出CSV

    表 3  普格县滑坡易发性评价模型结果对比(测试样本)

    Table 3.  Comparison of landslide susceptibility evaluation results of different models

    评价模型易发性等级面积/km面积占比Sai/%测试样本滑坡点(39个)Rei=Gei/Sai
    滑坡数量/个占比Gei/%
    I-LR极高易发169.898.911948.725.47
    高易发303.2815.901230.771.93
    中易发269.1014.1137.690.55
    低易发1164.7361.08512.820.21
    CF-LR极高易发183.439.621948.725.06
    高易发284.6214.921333.332.23
    中易发233.4212.2425.130.42
    低易发1205.5363.22512.820.20
    WF-LR极高易发168.778.852051.285.79
    高易发302.7815.881230.771.94
    中易发278.7114.6225.130.35
    低易发1156.7460.66512.820.21
    NFR-LR极高易发129.046.771948.727.20
    高易发248.9813.061025.641.96
    中易发519.7627.26512.820.47
    低易发1009.2352.92512.820.24
    下载: 导出CSV
  • [1]

    BRABB E, PAMPEYAN E, BONILLA M. Landslide susceptibility in San Mateo County[R]. fornia. 1972. https://pubs.er.usgs.gov/publication/mf360

    [2]

    COROMINAS J,VAN WESTEN C,FRATTINI P,et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment,2014,73(2):209 − 263. doi: 10.1007/s10064-013-0538-8

    [3]

    FELL R,COROMINAS J,BONNARD C,et al. Guidelines for landslide susceptibility,hazard and risk zoning for land use planning[J]. Engineering Geology,2008,102(3/4):85 − 98. doi: 10.1016/j.enggeo.2008.03.022

    [4]

    YIN K L, YAN T Z. Statistical prediction models for slope instability of metamorphosed rocks[J]. Landslides Proc 5th Symposium, Lausanne, 1988 (2): 1269 − 1272. https://www.mendeley.com/research/statistical-prediction-models-slope-instability-metamorphosed-rocks/

    [5]

    周天伦,曾超,范晨,等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun,ZENG Chao,FAN Chen,et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties,China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract)

    [6]

    王雷,吴君平,赵冰雪,等. 基于GIS和信息量模型的安徽池州地质灾害易发性评价[J]. 中国地质灾害与防治学报,2020,31(3):96 − 103. [WANG Lei,WU Junping,ZHAO Bingxue,et al. Susceptibility assessment of geohazards in Chizhou City of Anhui Province based on GIS and informative model[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):96 − 103. (in Chinese with English abstract)

    [7]

    DEVKOTA K C,REGMI A D,POURGHASEMI H R,et al. Landslide susceptibility mapping using certainty factor,index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat Road section in Nepal Himalaya[J]. Natural Hazards,2013,65(1):135 − 165. doi: 10.1007/s11069-012-0347-6

    [8]

    杨光,徐佩华,曹琛,等. 基于确定性系数组合模型的区域滑坡敏感性评价[J]. 工程地质学报,2019,27(5):1153 − 1163. [YANG Guang,XU Peihua,CAO Chen,et al. Assessment of regional landslide susceptibility based on combined model of certainty factor method[J]. Journal of Engineering Geology,2019,27(5):1153 − 1163. (in Chinese with English abstract)

    [9]

    LEE S,CHOI J. Landslide susceptibility mapping using GIS and the weight-of-evidence model[J]. International Journal of Geographical Information Science,2004,18(8):789 − 814. doi: 10.1080/13658810410001702003

    [10]

    张艳玲,南征兵,周平根. 利用证据权法实现滑坡易发性区划[J]. 水文地质工程地质,2012,39(2):121 − 125. [ZHANG Yanling,NAN Zhengbing,ZHOU Pinggen. Division of landslide susceptibility based on weights of evidence model[J]. Hydrogeology & Engineering Geology,2012,39(2):121 − 125. (in Chinese with English abstract)

    [11]

    范强,巨能攀,向喜琼,等. 证据权法在区域滑坡危险性评价中的应用—以贵州省为例[J]. 工程地质学报,2014,22(3):474 − 481. [FAN Qiang,JU Nengpan,XIANG Xiqiong,et al. Landslides hazards assessment with weights of evidence: A case study in Guizhou,China[J]. Journal of Engineering Geology,2014,22(3):474 − 481. (in Chinese with English abstract)

    [12]

    吴常润,角媛梅,王金亮,等. 基于频率比-逻辑回归耦合模型的双柏县滑坡易发性评价[J]. 自然灾害学报,2021,30(4):213 − 224. [WU Changrun,JIAO Yuanmei,WANG Jinliang,et al. Frequency ratio and logistic regression models based coupling analysis for susceptibility of landslide in Shuangbai County[J]. Journal of Natural Disasters,2021,30(4):213 − 224. (in Chinese with English abstract)

    [13]

    GUZZETTI F,CARRARA A,CARDINALI M,et al. Landslide hazard evaluation:A review of current techniques and their application in a multi-scale study,Central Italy[J]. Geomorphology,1999,31(1 − 4):181 − 216. doi: 10.1016/S0169-555X(99)00078-1

    [14]

    王进,郭靖,王卫东,等. 权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较[J]. 中南大学学报(自然科学版),2012,43(5):1932 − 1939. [WANG Jin,GUO Jing,WANG Weidong,et al. Application and comparison of weighted linear combination model and logistic regression model in landslide susceptibility mapping[J]. Journal of Central South University (Science and Technology),2012,43(5):1932 − 1939. (in Chinese with English abstract)

    [15]

    许冲,戴福初,徐素宁,等. 基于逻辑回归模型的汶川地震滑坡危险性评价与检验[J]. 水文地质工程地质,2013,40(3):98 − 104. [XU Chong,DAI Fuchu,XU Suning,et al. Application of logistic regression model on the Wenchuan earthquake triggered landslide hazard mapping and its validation[J]. Hydrogeology & Engineering Geology,2013,40(3):98 − 104. (in Chinese with English abstract)

    [16]

    VORPAHL P,ELSENBEER H,MÄRKER M,et al. How can statistical models help to determine driving factors of landslides?[J]. Ecological Modelling,2012,239:27 − 39. doi: 10.1016/j.ecolmodel.2011.12.007

    [17]

    何书,鲜木斯艳·阿布迪克依木,胡萌,等. 基于自组织特征映射网络-随机森林模型的滑坡易发性评价—以江西大余县为例[J]. 中国地质灾害与防治学报,2022,33(1):132 − 140. [HE Shu,ABUDIKEYIMU XMSY,HU Meng,et al. Evaluation on landslide susceptibility based on self-organizing feature map network and random forest model:a case study of Dayu County of Jiangxi ProvinceFull text replacement[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):132 − 140. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.01-16

    [18]

    GUZZETTI F,GALLI M,REICHENBACH P,et al. Landslide hazard assessment in the Collazzone area,Umbria,Central Italy[J]. Natural Hazards and Earth System Sciences,2006,6(1):115 − 131. doi: 10.5194/nhess-6-115-2006

    [19]

    LEE C T,HUANG C C,LEE J F,et al. Statistical approach to earthquake-induced landslide susceptibility[J]. Engineering Geology,2008,100(1/2):43 − 58. doi: 10.1016/j.enggeo.2008.03.004

    [20]

    樊芷吟,苟晓峰,秦明月,等. 基于信息量模型与Logistic回归模型耦合的地质灾害易发性评价[J]. 工程地质学报,2018,26(2):340 − 347. [FAN Zhiyin,GOU Xiaofeng,QIN Mingyue,et al. Information and logistic regression models based coupling analysis for susceptibility of geological hazards[J]. Journal of Engineering Geology,2018,26(2):340 − 347. (in Chinese with English abstract)

    [21]

    栗泽桐,王涛,周杨,等. 基于信息量、逻辑回归及其耦合模型的滑坡易发性评估研究:以青海沙塘川流域为例[J]. 现代地质,2019,33(1):235 − 245. [LI Zetong,WANG Tao,ZHOU Yang,et al. Landslide susceptibility assessment based on information value model,logistic regression model and their integrated model:A case in Shatang River Basin,Qinghai Province[J]. Geoscience,2019,33(1):235 − 245. (in Chinese with English abstract)

    [22]

    罗路广,裴向军,黄润秋,等. GIS支持下CF与Logistic回归模型耦合的九寨沟景区滑坡易发性评价[J]. 工程地质学报,2021,29(2):526 − 535. [LUO Luguang,PEI Xiangjun,HUANG Runqiu,et al. Landslide susceptibility assessment in Jiuzhaigou scenic area with GIS based on certainty factor and logistic regression model[J]. Journal of Engineering Geology,2021,29(2):526 − 535. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-202

    [23]

    张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparison of landslide susceptibility assessment models in Zhenkang County,Yunnan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2021.0360

    [24]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)

    [25]

    沈迪,郭进京,陈俊合. 甘肃定西地区地质灾害危险性评价[J]. 中国地质灾害与防治学报,2021,32(4):134 − 142. [SHEN Di,GUO Jinjing,CHEN Junhe. Risk assessment of geological hazards in Dingxi region of Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):134 − 142. (in Chinese with English abstract)

    [26]

    SÜZEN M L,DOYURAN V. A comparison of the GIS based landslide susceptibility assessment methods:multivariate versus bivariate[J]. Environmental Geology,2004,45(5):665 − 679. doi: 10.1007/s00254-003-0917-8

    [27]

    FELICÍSIMO Á M,CUARTERO A,REMONDO J,et al. Mapping landslide susceptibility with logistic regression,multiple adaptive regression splines,classification and regression trees,and maximum entropy methods:a comparative study[J]. Landslides,2013,10(2):175 − 189. doi: 10.1007/s10346-012-0320-1

    [28]

    GOETZ J N,BRENNING A,PETSCHKO H,et al. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling[J]. Computers & Geosciences,2015,81:1 − 11. doi: 10.1016/j.cageo.2015.04.007

    [29]

    凌飞, 杨东, 王双, 等. 四川省普格县地质灾害风险调查评价(1∶50000)成果报告[R]. 四川: 四川志德岩土工程有限责任公司, 2021

    LING Fei, YANG Dong, WANG Shuang, et al. Report on the results of geological disaster risk investigation and evaluation (1∶50000) in Puge County, Sichuan Province [R]. Sichuan: Sichuan Zhide Geotechnical Engineering Co. Ltd., 2021. (in Chinese)

    [30]

    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters,2006,27(8):861 − 874. doi: 10.1016/j.patrec.2005.10.010

    [31]

    SRIDEVI JADI,S. SARKAR,杨健. 斜坡不稳定性分类的统计模型[J]. 世界地质,1997,16(1):83 − 88. [SRIDEVI JADI,SARKAR S,YANG J. Statistical model of slope instability classification[J]. World Geology,1997,16(1):83 − 88. (in Chinese with English abstract)

  • 加载中

(4)

(3)

计量
  • 文章访问数:  1440
  • PDF下载数:  61
  • 施引文献:  0
出版历程
收稿日期:  2022-02-25
修回日期:  2022-06-16
刊出日期:  2022-08-25

目录