中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于改进突变理论的滑坡危险性评价

张蕊, 郭荣昌, 贺攀, 余岭燕. 基于改进突变理论的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2023, 34(1): 121-128. doi: 10.16031/j.cnki.issn.1003-8035.202112034
引用本文: 张蕊, 郭荣昌, 贺攀, 余岭燕. 基于改进突变理论的滑坡危险性评价[J]. 中国地质灾害与防治学报, 2023, 34(1): 121-128. doi: 10.16031/j.cnki.issn.1003-8035.202112034
ZHANG Rui, GUO Rongchang, HE Pan, YU Lingyan. Landslide hazard assessment based on improved catastrophe theory[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 121-128. doi: 10.16031/j.cnki.issn.1003-8035.202112034
Citation: ZHANG Rui, GUO Rongchang, HE Pan, YU Lingyan. Landslide hazard assessment based on improved catastrophe theory[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 121-128. doi: 10.16031/j.cnki.issn.1003-8035.202112034

基于改进突变理论的滑坡危险性评价

  • 基金项目: 甘肃省自然科学基金(21JR1RA254);兰州交通大学青年科学基金项目(2018021)
详细信息
    作者简介: 张 蕊(1994-),女,汉族,陕西西安人,硕士研究生,研究方向为地质灾害风险评估。E-mail:2991099579@qq.com
    通讯作者: 郭荣昌(1986-),男,汉族,河南林州人,博士,副教授,研究方向为地质灾害风险评估。E-mail:grc_mail@126.com
  • 中图分类号: P642.22

Landslide hazard assessment based on improved catastrophe theory

More Information
  • 滑坡危险性评价是滑坡风险评估的重要组成部分,对滑坡的预测和防治意义重大。传统滑坡危险性评价在计算指标间重要性时多采用AHP、专家评判法、模糊综合评判等方法, 但存在主观性较强,计算较为复杂等问题。研究基于一种改进的突变理论模型对滑坡进行危险性评价,选取坡度、坡向、高程、平面曲率、剖面曲率、距河流距离、地层岩性、土地利用类型、距断层距离、植被覆盖率、24 h降雨以及人类工程活动等12 个因子作为滑坡危险性评价的影响因子,采用熵权法判定指标间的相对重要性,并建立滑坡危险性评价体系;然后对指标进行标准化、归一化,计算总突变结果;最后使用拟合函数对总突变结果进行转换,得到新的滑坡危险性评价准则,并以雅安市的20 条滑坡对评价准则进行实例验证。结果表明,突变理论得到的评价结果准确率为90%,评价结果更加直观准确。

  • 加载中
  • 图 1  常用突变模型

    Figure 1. 

    图 2  底层指标与总突变结果拟合曲线

    Figure 2. 

    表 1  一维状态变量的突变模型

    Table 1.  Mutation model of one-dimensional state variables

    突变模型控制变量维数势函数归一公式
    折叠突变1
    尖点突变2
    燕尾突变3
    下载: 导出CSV

    表 2  研究区滑坡的各评价指标

    Table 2.  Evaluation indexes of landslide in the study area

    滑坡点24 h降雨
    /mm
    地层岩性距断层距离
    /km
    土地利用
    类型
    坡度
    /(°)
    高程
    /m
    坡向
    / (°)
    平面曲率剖面曲率距河流距离
    /km
    植被
    覆盖率
    117砂岩3.1176有林地11.5042140322.8906−0.54400.53210.31680.3029
    22砾岩7.0588灌木林11.9137100299.0903−0.57420.11380.17400.1429
    316砂岩11.1765旱地9.646278911.30990.02170.14960.1740−0.1176
    49砂岩3.8235疏林地11.2428968326.9761−0.03500.04330.1020−0.0078
    518砂岩7.0588旱地27.0311696210.96380.1002−0.15830.44000.2735
    612砾岩0.4118旱地15.9518809122.73520.03800.20030.09000.3369
    718砂岩5.0588水田24.13191827170.36250.0489−0.00720.28000.4900
    86砂岩7.6471高覆盖度草地16.7599815255.5792−0.09650.09150.04320.4749
    98泥岩2.3529旱地20.9576157481.8699−0.0307−0.10130.27200.3189
    1017泥岩6.4706中覆盖度草地20.81431103243.9967−0.1543−0.03560.12600.2003
    113砂岩4.7059城镇用地12.958864958.32450.1499−0.06420.0300−0.0732
    1217砂岩2.6471有林地20.74551205124.31510.0250−0.12040.30000.3348
    1315砂岩9.0000中覆盖度草地23.0888209485.5154−0.0577−0.22898.60000.1837
    1418砂岩4.1176旱地7.853961125.0169−0.08660.21410.08000.1813
    1513冲洪积砾石及砂土2.2353旱地18.43501086180.0000−0.1286−0.11710.16400.0000
    165砂岩8.5294旱地18.568672660.25510.0832−0.07020.10000.2671
    1722冲洪积砾石及砂土2.3529旱地7.11721096334.2900−0.15900.49790.16800.3975
    1832砂岩8.4706旱地29.2601176959.62090.1344−0.02706.50000.4317
    1934冲洪积砾石及砂土8.8235旱地14.752557685.46220.11030.01150.04400.2170
    2034砂岩7.0588中覆盖度草地14.7242889267.27370.3683−0.34480.31200.3745
    下载: 导出CSV

    表 3  滑坡危险性评价体系

    Table 3.  Landslide risk assessment system

    目标层突变模型准则层突变模型中间层突变模型指标层
    滑坡危险性A燕尾突变(非互补)地形地貌B1尖点突变(非互补)地貌C1燕尾突变(非互补)剖面曲率D1
    平面曲率D2
    坡向D3
    滑坡形态C2尖点突变(互补)高程D4
    坡度D5
    地质条件B2燕尾突变(非互补)岩性条件C3折叠突变地层岩性D6
    构造条件C4尖点突变(非互补)距断层距离D7
    距河流距离D8
    植被条件C5折叠突变植被覆盖率D9
    诱发因素B3折叠突变致灾因子C6燕尾突变(非互补)24 h降雨D10
    土地利用类型D11
    人类工程活动D12
    下载: 导出CSV

    表 4  底层指标$ x $与总突变结果$ y $对应关系

    Table 4.  Corresponding relationship between underlying indicators $ x $ and total mutation results $ y $

    x0.000.050.100.150.200.250.30
    y0.00000.58660.74070.79000.82150.84510.8640
    x0.350.400.450.500.550.600.65
    y0.87990.89370.90580.91670.92660.93560.9440
    x0.700.750.800.850.900.951.00
    y0.95170.95900.96580.97230.97840.98420.9897
    下载: 导出CSV

    表 5  标准化结果

    Table 5.  Standardization results

    序号剖面曲率平面曲率坡向高程坡度地层岩性距断层距离距河流距离植被覆盖率降雨土地利用类型人类工程活动
    10.94480.08450.07490.49560.19780.900.76960.96930.35320.42990.700.89
    20.51120.05540.52360.27090.21370.600.43910.98440.59260.00500.600.34
    30.54830.63020.00670.15160.12570.900.09370.98440.98240.41420.500.35
    40.43810.57550.21700.25190.18760.900.71040.99200.81800.19280.800.30
    50.22910.70590.83510.09950.80000.900.43910.95620.39730.44840.500.40
    60.60090.64590.66280.16280.37030.600.99650.99330.30230.30210.500.33
    70.38580.65630.94320.73310.68760.900.60680.97320.07330.46190.400.80
    80.48800.51610.59740.16620.40160.900.38970.99830.09580.11151.100.32
    90.28820.57960.42220.59140.56451.400.83370.97400.32930.16480.500.32
    100.35630.46040.65910.32750.55891.400.48840.98950.50670.42991.200.32
    110.32660.75380.28350.07320.25420.900.63640.99970.91590.04150.100.20
    120.26840.63330.67210.38460.55620.900.80910.97110.30540.42990.700.30
    130.15590.55360.44360.88270.64710.900.27630.09120.53150.38691.200.48
    140.61520.52570.08740.05190.05620.900.68570.99440.53510.44850.500.31
    150.27180.48521.00000.31800.46661.500.84360.98550.80640.30770.500.32
    160.32040.68950.29490.11630.47180.900.31570.99230.40680.08930.500.30
    170.90930.45580.17810.32360.02761.500.83370.98510.21170.56600.500.30
    180.36520.73890.29110.70060.88650.900.32070.31380.16050.84300.500.46
    190.40510.71560.44330.03230.32381.500.29110.99820.48170.90480.500.35
    200.03570.96450.53510.20760.32270.900.43910.96980.24610.90501.200.40
    下载: 导出CSV

    表 6  滑坡危险性评价准则

    Table 6.  Criteria for landslide hazard assessment

    危险性级别高危险中危险低危险
    改进前(0.9100, 1](0.8500, 0.9100](0, 0.8500]
    改进后(0.4798, 1](0.2916, 0.4798](0, 0.2916]
    下载: 导出CSV

    表 7  滑坡危险性评价结果

    Table 7.  Landslide risk assessment results

    序号改进前危险性改进后危险性现场调查结果
    10.8057低危险0.2019低危险低危险
    20.6435低危险0.0526低危险低危险
    30.6586低危险0.0596低危险低危险
    40.8561中危险0.3068中危险中危险
    50.8880中危险0.3998中危险中危险
    60.8654中危险0.3313中危险高危险
    70.8493低危险0.2900低危险低危险
    80.8330低危险0.2531低危险低危险
    90.8605中危险0.3181中危险中危险
    100.9140高危险0.4961高危险高危险
    110.7670低危险0.1465低危险低危险
    120.9216高危险0.5281高危险高危险
    130.9019中危险0.4486中危险中危险
    140.7434低危险0.1204低危险低危险
    150.9046中危险0.4589中危险中危险
    160.8177低危险0.2230低危险低危险
    170.8124低危险0.2134低危险中危险
    180.8919中危险0.4130中危险中危险
    190.8113低危险0.2114低危险低危险
    200.8310低危险0.2492低危险低危险
    下载: 导出CSV
  • [1]

    汤明高,吴川,吴辉隆,等. 水库滑坡地下水动态响应规律及浸润线计算模型—以石榴树包滑坡为例[J]. 水文地质工程地质,2022,49(2):115 − 125. [TANG Minggao,WU Chuan,WU Huilong,et al. Dynamic response law of groundwater in reservoir landslide and calculation model of infiltration line: A case study of Shidshubao landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):115 − 125. (in Chinese with English abstract)

    [2]

    KALANTAR B,PRADHAN B,NAGHIBI S A,et al. Assessment of the effects of training data selection on the landslide susceptibility mapping:a comparison between support vector machine (SVM),logistic regression (LR) and artificial neural networks (ANN)[J]. Geomatics,Natural Hazards and Risk,2018,9(1):49 − 69. doi: 10.1080/19475705.2017.1407368

    [3]

    张钟远,邓明国,徐世光,等. 镇康县滑坡易发性评价模型对比研究[J]. 岩石力学与工程学报,2022,41(1):157 − 171. [ZHANG Zhongyuan,DENG Mingguo,XU Shiguang,et al. Comparative study on evaluation models of landslide susceptibility in Zhenkang County[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(1):157 − 171. (in Chinese with English abstract)

    [4]

    SHANO L,RAGHUVANSHI T K,METEN M. Landslide susceptibility mapping using frequency ratio model:The case of Gamo highland,South Ethiopia[J]. Arabian Journal of Geosciences,2021,14(7):1 − 18.

    [5]

    MAŁKA A N. Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models[J]. Natural Hazards,2021,107(1):639 − 674. doi: 10.1007/s11069-021-04599-8

    [6]

    祁于娜,王磊. 层次分析-熵值定权法应用于山区城镇地质灾害易发性评价[J]. 测绘通报,2021(6):112 − 116. [QI Yuna,WANG Lei. Application of AHP-entropy weight method in hazards susceptibility assessment in mountain town[J]. Bulletin of Surveying and Mapping,2021(6):112 − 116. (in Chinese with English abstract) doi: 10.13474/j.cnki.11-2246.2021.0187

    [7]

    吴博,赵法锁,段钊,等. 基于熵权的属性识别模型在陕西土质滑坡危险度评价中的应用[J]. 灾害学,2018,33(1):140 − 145. [WU Bo,ZHAO Fasuo,DUAN Zhao,et al. Application of attribute recognition model based on coefficient of entropy to hazard degree evaluation of soil landslide in Shaanxi[J]. Journal of Catastrophology,2018,33(1):140 − 145. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2018.01.025

    [8]

    ZHU J Q ,LI T Z . Catastrophe theory-based risk evaluation model for water and mud inrush and its application in Karst tunnels[J]. Journal of Central South University,2020,27(5):1587 − 1598. doi: 10.1007/s11771-020-4392-0

    [9]

    宋盛渊, 王清, 潘玉珍, 等. 基于突变理论的滑坡危险性评价[J]. 岩土力学, 2014, 35(增刊2): 422 − 428

    SONG Shengyuan, WANG Qing, PAN Yuzhen, et al. Evaluation of landslide susceptibility degree based on catastrophe theory[J]. Rock and Soil Mechanics, 2014, 35(Sup 2): 422 − 428. (in Chinese with English abstract)

    [10]

    王雪冬,叶果,李世宇,等. 基于熵值法和突变级数法的泥石流易损度评价[J]. 地质与资源,2019,28(5):493 − 496. [WANG Xuedong,YE Guo,LI Shiyu,et al. Vulnerability assessment of debris flow based on entropy value and catastrophe progression methods[J]. Geology and Resources,2019,28(5):493 − 496. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1947.2019.05.013

    [11]

    刘晓宇,任光明,刘彬,等. 基于突变理论的滑坡危险性评价[J]. 西华大学学报(自然科学版),2020,39(2):95 − 99. [LIU Xiaoyu,REN Guangming,LIU Bin,et al. Analysis of landslide hazard based on mutation series method[J]. Journal of Xihua University (Natural Science Edition),2020,39(2):95 − 99. (in Chinese with English abstract)

    [12]

    MOGAJI K A,LIM H S. Development of a GIS-based catastrophe theory model (modified DRASTIC model) for groundwater vulnerability assessment[J]. Earth Science Informatics,2017,10(3):339 − 356. doi: 10.1007/s12145-017-0300-z

    [13]

    GHORBANI M A,KHATIBI R,SIVAKUMAR B,et al. Study of discontinuities in hydrological data using catastrophe theory[J]. Hydrological Sciences Journal,2010,55(7):1137 − 1151. doi: 10.1080/02626667.2010.513477

    [14]

    QIU X X,CAO Q G,WANG Y N,et al. Risk assessment method of coal spontaneous combustion based on catastrophe theory[J]. IOP Conference Series:Earth and Environmental Science,2020,603(1):012017. doi: 10.1088/1755-1315/603/1/012017

    [15]

    王艺洁,张东映,张小清,等. 基于改进突变评价法的安徽省旱灾风险评价[J]. 水电能源科学,2020,38(11):1 − 4. [WANG Yijie,ZHANG Dongying,ZHANG Xiaoqing,et al. Drought risk assessment of Anhui Province based on improved catastrophe progression approach[J]. Water Resources and Power,2020,38(11):1 − 4. (in Chinese with English abstract)

    [16]

    夏杰塬. 改进的突变评价法在河南省农业干旱中的应用[D]. 郑州: 华北水利水电大学, 2017

    XIA Jieyuan. Application of improved catastrophe evaluation method in agricultural drought in Henan Province[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2017. (in Chinese with English abstract)

    [17]

    赵晓燕,谈树成,李永平. 基于斜坡单元与组合赋权法的东川区地质灾害危险性评价[J]. 云南大学学报(自然科学版),2021,43(2):299 − 305. [ZHAO Xiaoyan,TAN Shucheng,LI Yongping. Risk assessment of geological hazards in Dongchuan District based on the methods of slope unit and combination weighting[J]. Journal of Yunnan University (Natural Sciences Edition),2021,43(2):299 − 305. (in Chinese with English abstract)

    [18]

    梁桂兰,徐卫亚,何育智,等. 突变级数法在边坡稳定综合评判中的应用[J]. 岩土力学,2008,29(7):1895 − 1899. [LIANG Guilan,XU Weiya,HE Yuzhi,et al. Application of catastrophe progression method to comprehensive evaluation of slope stability[J]. Rock and Soil Mechanics,2008,29(7):1895 − 1899. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.07.031

    [19]

    唐然,邓韧,董建辉,等. 雅安市汉源县永定桥水库飞水沟滑坡成因机制分析[J]. 地质论评,2015,61(增刊 1):110 − 111. [Tang Ran,Deng Ren,Dong Jianhui,et al. Genetic mechanism analysis of Feishuigou landslide in Yongdingqiao Reservoir, Hanyuan County, Ya’an City[J]. Geological Review,2015,61(Sup 1):110 − 111. (in Chinese with English abstract)

    [20]

    李鹏岳,巴仁基,倪化勇,等. 库水位升降速率对雅安双家坪堆积体滑坡稳定性影响模拟分析[J]. 地质力学学报,2017,23(2):288 − 295. [LI Pengyue,BA Renji,NI Huayong,et al. Simulation analysis of the influence of water level rise and fall rate on the stability of Shuangjiaping accumulation in Ya’an[J]. Chinese Journal of Geomechanics,2017,23(2):288 − 295. (in Chinese with English abstract)

    [21]

    徐晓雪,季灵运,张文婷,等. 基于相干性的InSAR时间序列方法追溯四川雅安地区汉源滑坡灾前形变[J]. 地球科学与环境学报,2022,44(4):632 − 640. [XU Xiaoxue,JI Lingyun,ZHANG Wenting,et al. Trace deformation of Hanyuan Landslide in Ya 'an Area, Sichuan Province based on InSAR time series method of coherence[J]. Journal of Earth Sciences and Environment,2022,44(4):632 − 640. (in Chinese with English abstract)

    [22]

    侯圣山,李昂,韩冰,等. 四川雅安地质灾害预警预报及分析[J]. 中国地质灾害与防治学报,2014,25(4):134 − 138. [HOU Shengshan,LI Ang,HAN Bing,et al. Prediction and analysis of geological hazards in Ya’an, Sichuan Province[J]. The Chinese Journal of Geological Hazards and Control,2014,25(4):134 − 138. (in Chinese with English abstract)

    [23]

    方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. Prediction model of regional landslide disaster in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)

    [24]

    刘福臻,王灵,肖东升. 机器学习模型在滑坡易发性评价中的应用[J]. 中国地质灾害与防治学报,2021,32(6):98 − 106. [LIU Fuzhen,WANG Ling,XIAO Dongsheng. Application of machine learning model in landslide susceptibility evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):98 − 106. (in Chinese with English abstract)

    [25]

    杨华阳,许向宁,杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang,XU Xiangning,YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2020.03.03

    [26]

    周天伦,曾超,范晨,等. 基于快速聚类-信息量模型的汶川及周边两县滑坡易发性评价[J]. 中国地质灾害与防治学报,2021,32(5):137 − 150. [ZHOU Tianlun,ZENG Chao,FAN Chen,et al. Landslide susceptibility assessment based on K-means cluster information model in Wenchuan and two neighboring counties,China[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):137 − 150. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-17

  • 加载中

(2)

(7)

计量
  • 文章访问数:  1226
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2021-12-28
修回日期:  2022-04-07
刊出日期:  2023-02-25

目录