中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于栅格径流汇流模拟的西藏林芝市泥石流灾害预警模型初探

陈宫燕, 李婷, 陈军, 普布桑姆, 阿旺卓玛, 旺杰. 基于栅格径流汇流模拟的西藏林芝市泥石流灾害预警模型初探[J]. 中国地质灾害与防治学报, 2023, 34(1): 110-120. doi: 10.16031/j.cnki.issn.1003-8035.202201002
引用本文: 陈宫燕, 李婷, 陈军, 普布桑姆, 阿旺卓玛, 旺杰. 基于栅格径流汇流模拟的西藏林芝市泥石流灾害预警模型初探[J]. 中国地质灾害与防治学报, 2023, 34(1): 110-120. doi: 10.16031/j.cnki.issn.1003-8035.202201002
CHEN Gongyan, LI Ting, CHEN Jun, PUBU Sangmu, AWANG Zhuomu, WANG Jie. Primary establishment of an early warning model of debris flow hazards in Nyingchi City of Tibetan autonomous region based on raster runoff simulation[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 110-120. doi: 10.16031/j.cnki.issn.1003-8035.202201002
Citation: CHEN Gongyan, LI Ting, CHEN Jun, PUBU Sangmu, AWANG Zhuomu, WANG Jie. Primary establishment of an early warning model of debris flow hazards in Nyingchi City of Tibetan autonomous region based on raster runoff simulation[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(1): 110-120. doi: 10.16031/j.cnki.issn.1003-8035.202201002

基于栅格径流汇流模拟的西藏林芝市泥石流灾害预警模型初探

  • 基金项目: 西藏自治区自然科学基金项目(XZ202101ZR0042G)
详细信息
    作者简介: 陈宫燕(1984-),女,四川南充人,副研级高级工程师,学士,主要研究方向为预报技术与方法。E-mail:chengongyan_35@163.com
    通讯作者: 李 婷(1997-),女,硕士,湖南邵阳人,研究方向为暴雨洪涝灾害与水污染模拟。E-mail:827925664@qq.com
  • 中图分类号: P642.23

Primary establishment of an early warning model of debris flow hazards in Nyingchi City of Tibetan autonomous region based on raster runoff simulation

More Information
  • 西藏林芝市泥石流灾害频发,亟需建立泥石流灾害预警模型,预测林芝市泥石流灾害可能发生的区域,减少泥石流灾害导致的损失。文章提出了一种基于栅格径流汇流的林芝市泥石流灾害预警模型,从栅格像元尺度上模拟流域各位置上的水深,以提高泥石流预警的空间针对性。该模型将泥石流致灾因子分为背景因子和激发因子。通过林芝市裸岩率、河床纵比降等因子的逻辑回归,获取林芝市泥石流灾害概率,作为泥石流预警模型的背景因子;引入栅格径流汇流模型,以站点降水和雪水当量为模型的水量输入,模拟预警时段内的流域各位置上的模型水深,作为泥石流预警模型的激发因子。利用二元逻辑回归的方法计算背景因子和激发因子的权重,建立泥石流预警模型。利用2011—2020年18次历史灾害对模型进行验证,落入预警区内的灾害点占比64.4%,预警精度较高,对于林芝市泥石流灾害预警具有一定的指导意义。

  • 加载中
  • 图 1  林芝市泥石流灾害点、隐患点分布图

    Figure 1. 

    图 2  泥石流灾害预警模型构建思路

    Figure 2. 

    图 3  林芝市泥石流沟流域划分

    Figure 3. 

    图 4  2015年9月6日23时径流汇流模拟结果

    Figure 4. 

    图 5  测量水位点模拟水深与实际水深对比

    Figure 5. 

    图 6  林芝市泥石流历史灾害点河道距离

    Figure 6. 

    图 7  不同预警阈值下的预警区灾害点比例和平均预警区面积平均占比

    Figure 7. 

    图 8  林芝市2020年7月11日、8月15日泥石流灾害预警图

    Figure 8. 

    表 1  逻辑回归分析结果

    Table 1.  Results of logistic regression analysis

    指标因子BS.EWalsdfSig.exp(B
    裸岩信息0.9250.4564.11910.0422.523
    流域面积0.8800.3945.00010.0252.412
    沟床纵比降1.0420.18631.348102.834
    河流1.0000.12266.763102.717
    道路0.8790.10569.489102.409
    断层密度0.9950.4425.05910.0242.704
    土地利用0.5410.2454.88810.0271.718
    土壤类型0.6030.11218.239101.828
    隐患点密度0.8960.29763.593102.449
    沟谷密度1.2950.21119.043103.650
    年降水量1.0640.28125.459102.897
    常量−1.4850.28127.852100.226
      注:B为逻辑回归系数;S.E.为标准误差;Wals为卡方值统计量;df为自由度;Sig.为显著性。
    下载: 导出CSV

    表 2  泥石流灾害的概率占比

    Table 2.  Probability proportion of debris flow disaster

    级别取值区间灾害点数量百分比/%
    一级[0, 0.2)86.25
    二级[0.2, 0.4)53.90
    三级[0.4, 0.6)21.56
    四级[0.6, 0.8)97.03
    五级[0.8, 1)10481.25
    下载: 导出CSV

    表 3  径流水深分级

    Table 3.  Classification of runoff depth

    级别水深区间/m
    1(0, 0.01]
    2(0.01, 0.05]
    3(0.05, 0.1]
    4(0.1, 0.3]
    5>0.3
    下载: 导出CSV

    表 4  逻辑回归方程表

    Table 4.  Logistic regression equation table

    BS.E.WalddfSig.exp(B
    P0.7900.2579.48610.0022.204
    D0.8340.2977.91010.0052.303
    常量−5.3301.43213.85710.0000.005
      注:B为逻辑回归系数;S.E.为标准误差;Wald为卡方值;df为自由度;Sig.为显著性。
    下载: 导出CSV

    表 5  泥石流灾害预警验证结果

    Table 5.  Validation results of debris flow disaster early warning

    序号灾害日期灾害点数/个预警区内灾害点数/个
    12011年7月14日21
    22013年7月6日11
    32014年4月16日10
    42014年7月18日10
    52015年8月6日51
    62015年8月19日127
    72015年8月20日22
    82015年8月21日33
    92016年4月25日11
    102016年7月26日33
    112016年7月27日21
    122017年8月3日10
    132017年7月21日11
    142018年9月9日11
    152019年7月7日21
    162020年7月10日22
    172020年7月11日32
    182020年8月15日22
    合计4529
    下载: 导出CSV
  • [1]

    屈永平, 唐川, 刘洋, 等. 西藏林芝地区冰川降雨型泥石流调查分析[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4013 − 4022

    QU Yongping, TANG Chuan, LIU Yang, et al. Investigation and analysis of glacier debris flow in Nyingchi area, Tibet[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Sup 2): 4013 − 4022. (in Chinese with English abstract)

    [2]

    陈宫燕,普布桑姆,次仁旺姆,等. 基于Logistic回归方法的林芝市山洪地质灾害预警研究[J]. 中国农学通报,2019,35(23):124 − 130. [CHEN Gongyan,PU Busangmu,CI Renwangmu,et al. Early warning of mountain flood geological disasters in Nyingchi based on logistic regression method[J]. Chinese Agricultural Science Bulletin,2019,35(23):124 − 130. (in Chinese with English abstract) doi: 10.11924/j.issn.1000-6850.casb18040021

    [3]

    陈宫燕,普布桑姆,次仁,等. 西藏林芝降水引发的山洪地质灾害分布特征[J]. 中国地质灾害与防治学报,2018,29(2):100 − 103. [CHEN Gongyan,PU Busangmu,CIREN,et al. Distribution characteristics of mountain flood and geological disaster caused by precipitation of Nyingchi in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):100 − 103. (in Chinese with English abstract)

    [4]

    SALINAS-JASSO J A,VELASCO-TAPIA F,DE LEÓN I N,et al. Estimation of rainfall thresholds for shallow landslides in the Sierra Madre Oriental,northeastern Mexico[J]. Journal of Mountain Science,2020,17(7):1565 − 1580. doi: 10.1007/s11629-020-6050-2

    [5]

    YAN Y,ZHANG Y,HU W,et al. A multiobjective evolutionary optimization method based critical rainfall thresholds for debris flows initiation[J]. Journal of Mountain Science,2020,17(8):1860 − 1873. doi: 10.1007/s11629-019-5812-1

    [6]

    马煜,李彩侠. 地形因子对四川龙溪河流域泥石流发生的影响[J]. 中国地质灾害与防治学报,2018,29(2):16 − 21. [MA Yu,LI Caixia. Effect of topographic factor on the formation of debris flows in Longxi River Area,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2018,29(2):16 − 21. (in Chinese with English abstract)

    [7]

    熊江,唐川,陈明. 泥石流早期识别与监测预警研究进展探讨[J]. 自然灾害学报,2021,30(1):165 − 173. [XIONG Jiang,TANG Chuan,CHEN Ming. Discussion on the research progress of early identification,monitoring and early warning of debris flow[J]. Journal of Natural Disasters,2021,30(1):165 − 173. (in Chinese with English abstract)

    [8]

    王英杰. 岷江上游泥石流预警报模型构建及其应用[D]. 绵阳: 西南科技大学, 2020

    WANG Yingjie. Construction and application of debris flow early-warning and forecast model in the upper Min River[D]. Mianyang: Southwest University of Science and Technology, 2020. (in Chinese with English abstract)

    [9]

    PONZIANI M,POGLIOTTI P,STEVENIN H,et al. Debris-flow Indicator for an early warning system in the Aosta valley region[J]. Natural Hazards,2020,104(2):1819 − 1839. doi: 10.1007/s11069-020-04249-5

    [10]

    黄健,胡卸文,金涛,等. 四川西昌“3·30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian,HU Xiewen,JIN Tao,et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)

    [11]

    包红军,王凯,张少杰,等. 耦合分布式水文模型的泥石流物理模型预报试验[J]. 暴雨灾害,2018,37(4):303 − 310. [BAO Hongjun,WANG Kai,ZHANG Shaojie,et al. Debris flow forecasting test based on a physical model coupling with a distributed hydrological model[J]. Torrential Rain and Disasters,2018,37(4):303 − 310. (in Chinese with English abstract)

    [12]

    王治华,郭兆成,杜明亮,等. 基于数字滑坡技术的暴雨滑坡、泥石流预警、监测模型研究[J]. 地学前缘,2011,18(5):303 − 309. [WANG Zhihua,GUO Zhaocheng,DU Mingliang,et al. Model study of monitoring and early warning of rainstorm induced landslide and debris flow based on digital landslide technology[J]. Earth Science Frontiers,2011,18(5):303 − 309. (in Chinese with English abstract)

    [13]

    王海芝. 北京地区暴雨泥石流预警阈值研究[J]. 第四纪研究,2020,40(5):1371 − 1380. [WANG Haizhi. Early warning thresholds of the rainfall-induced debris flows in Beijing[J]. Quaternary Sciences,2020,40(5):1371 − 1380. (in Chinese with English abstract) doi: 10.11928/j.issn.1001-7410.2020.05.24

    [14]

    BUGAETS A N,GARTSMAN B I,TERESHKINA A A,et al. Using the SWAT model for studying the hydrological regime of a small river basin (the komarovka river,primorsky Krai)[J]. Russian Meteorology and Hydrology,2018,43(5):323 − 331. doi: 10.3103/S1068373918050060

    [15]

    THOMPSON J R,SØRENSON H R,GAVIN H,et al. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England[J]. Journal of Hydrology,2004,293(1/2/3/4):151 − 179.

    [16]

    王济,蔡雄飞,雷丽,等. 不同裸岩率下我国西南喀斯特山区土壤侵蚀的室内模拟[J]. 中国岩溶,2010,29(1):1 − 5. [WANG Ji,CAI Xiongfei,LEI Li,et al. Laboratory simulation on soil erosion under different bedrock outcrop rate in Southwest Karst area, China[J]. Carsologica Sinica,2010,29(1):1 − 5. (in Chinese with English abstract)

    [17]

    LIU W, HE S. Comprehensive modelling of runoff-generated debris flow from formation to propagation in a catchment. Landslides, 2020, 17(4): 1529 − 1544.

    [18]

    张书豪,吴光,张乔,等. 基于子流域特征的泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):142 − 149. [ZHANG Shuhao,WU Guang,ZHANG Qiao,et al. Debris-flow susceptibility assessment using the characteristic factors of a catchment[J]. Hydrogeology & Engineering Geology,2018,45(2):142 − 149. (in Chinese with English abstract)

    [19]

    张以晨,秦胜伍,翟健健,等. 基于信息量的长白山地区泥石流易发性评价[J]. 水文地质工程地质,2018,45(2):150 − 158. [ZHANG Yichen,QIN Shengwu,ZHAI Jianjian,et al. Susceptibility assessment of debris flow based on GIS and weight information for the Changbai Mountain area[J]. Hydrogeology & Engineering Geology,2018,45(2):150 − 158. (in Chinese with English abstract)

    [20]

    张盼盼,胡远满,肖笃宁,等. 一种基于多光谱遥感影像的喀斯特地区裸岩率的计算方法初探[J]. 遥感技术与应用,2010,25(4):510 − 514. [ZHANG Panpan,HU Yuanman,XIAO Duning,et al. A method of the percentage of bare rock calculation in Karst areas based on multi-spectrum remote sensing image[J]. Remote Sensing Technology and Application,2010,25(4):510 − 514. (in Chinese with English abstract) doi: 10.11873/j.issn.1004-0323.2010.4.510

    [21]

    陈冠,孟兴民,郭鹏,等. 白龙江流域基于GIS与信息量模型的滑坡危险性等级区划[J]. 兰州大学学报(自然科学版),2011,47(6):1 − 6. [CHEN Guan,MENG Xingmin,GUO Peng,et al. Landslide susceptibility mapping based on GIS and information value model in Bailong River Basin[J]. Journal of Lanzhou University (Natural Sciences),2011,47(6):1 − 6. (in Chinese with English abstract)

    [22]

    王卫东,钟晟. 基于GIS的Logistic回归模型在地质灾害危险性区划中的应用[J]. 工程勘察,2009,37(11):5 − 10. [WANG Weidong,ZHONG Sheng. The application of GIS-based logistic regression for geological hazards zonation[J]. Geotechnical Investigation & Surveying,2009,37(11):5 − 10. (in Chinese with English abstract)

    [23]

    HOCK R. Glacier melt:A review of processes and their modelling[J]. Progress in Physical Geography:Earth and Environment,2005,29(3):362 − 391. doi: 10.1191/0309133305pp453ra

    [24]

    张勇,刘时银. 度日模型在冰川与积雪研究中的应用进展[J]. 冰川冻土,2006,28(1):101 − 107. [ZHANG Yong,LIU Shiyin. Progress of the application of degree-day model to study glaciers and snow cover[J]. Journal of Glaciology and Geocryology,2006,28(1):101 − 107. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0240.2006.01.014

    [25]

    闫玉娜,车涛,李弘毅,等. 使用积雪遥感面积数据改善山区春季融雪径流模拟精度[J]. 冰川冻土,2016,38(1):211 − 221. [YAN Yuna,CHE Tao,LI Hongyi,et al. Using snow remote sensing data to improve the simulation accuracy of spring snowmelt runoff:Take Babao River Basin as an example[J]. Journal of Glaciology and Geocryology,2016,38(1):211 − 221. (in Chinese with English abstract)

    [26]

    OMANI N,SRINIVASAN R,SMITH P K,et al. Glacier mass balance simulation using SWAT distributed snow algorithm[J]. Hydrological Sciences Journal,2017,62(4):546 − 560. doi: 10.1080/02626667.2016.1162907

  • 加载中

(8)

(5)

计量
  • 文章访问数:  1045
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2022-01-04
修回日期:  2022-04-07
刊出日期:  2023-02-25

目录