中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于分形理论和模型试验的沟道物源动储量评价模型

张友谊, 王云骏, 袁亚东. 基于分形理论和模型试验的沟道物源动储量评价模型[J]. 中国地质灾害与防治学报, 2022, 33(5): 40-49. doi: 10.16031/j.cnki.issn.1003-8035.202202006
引用本文: 张友谊, 王云骏, 袁亚东. 基于分形理论和模型试验的沟道物源动储量评价模型[J]. 中国地质灾害与防治学报, 2022, 33(5): 40-49. doi: 10.16031/j.cnki.issn.1003-8035.202202006
ZHANG Youyi, WANG Yunjun, YUAN Yadong. Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 40-49. doi: 10.16031/j.cnki.issn.1003-8035.202202006
Citation: ZHANG Youyi, WANG Yunjun, YUAN Yadong. Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 40-49. doi: 10.16031/j.cnki.issn.1003-8035.202202006

基于分形理论和模型试验的沟道物源动储量评价模型

  • 基金项目: 国家重点研发计划项目(2018YFC1505400);国家自然科学基金面上项目(41877524)
详细信息
    作者简介: 张友谊(1980-),男,安徽宿州人,博士,副教授,主要研究方向为地质灾害成因机理及防治技术。 E-mail:53437391@qq.com
  • 中图分类号: P642.23

Dynamic reserves of evaluation model for materials source in the channel based on fractal theory and model test

  • 汶川地震后,大量松散固体物源堆积在沟道中,使沟道泥石流发生的概率激增。准确的计算泥石流沟道物源的动储量一直是泥石流物源统计的难点。文章以七盘沟下游主沟段沟道物源为研究对象,在实地勘查、资料收集的基础上,以室内模型试验为研究手段,引入分形理论将复杂的土体粒度成分用分维值定量描述,研究不同沟道堆积体在不同降雨作用下的侵蚀规律,建立以降雨强度和分维度为双影响因子的动储量评价模型。研究表明:粗粒土不易起动,但在充足的水动力条件下,侵蚀作用会成倍放大;上细下粗土发生泥石流时侵蚀变化和总的侵蚀规模较小,这种粒序分布形式有益于沟道的稳定;上粗下细土与粗粒土的侵蚀现象类似,但发生大规模泥石流的降雨阈值低于粗粒土;沟道物源中,侵蚀作用效应的排序为:溯源侵蚀>下切侵蚀>侧缘侵蚀>潜蚀;文章所拟合的公式适用于宽缓型沟道泥石流,对于窄陡型沟道泥石流存在一定的局限性。

  • 加载中
  • 图 1  堆积体示意图

    Figure 1. 

    图 2  七盘沟沟道物源野外筛分试验

    Figure 2. 

    图 3  “7·10”试验土级配曲线

    Figure 3. 

    图 4  “8·20”试验土级配曲线

    Figure 4. 

    图 5  试验布置

    Figure 5. 

    图 6  细粒土49.1 mm/h试验过程现象

    Figure 6. 

    图 7  细粒土侵蚀宽度与深度

    Figure 7. 

    图 8  粗粒土49.1 mm/h试验过程现象

    Figure 8. 

    图 9  粗粒土侵蚀宽度与深度

    Figure 9. 

    图 10  细粒土单位侵蚀量

    Figure 10. 

    图 11  粗粒土单位侵蚀量

    Figure 11. 

    图 12  上细下粗土49.1 mm/h试验过程现象

    Figure 12. 

    图 13  上细下粗土侵蚀宽度与深度

    Figure 13. 

    图 14  上粗下细土49.1 mm/h试验过程现象

    Figure 14. 

    图 15  上粗下细土侵蚀宽度与深度

    Figure 15. 

    图 16  上细下粗土单位侵蚀量

    Figure 16. 

    图 17  上粗下细土单位侵蚀量

    Figure 17. 

    图 18  试验模型侵蚀量与雨强的曲线关系

    Figure 18. 

    表 1  模型试验降雨条件

    Table 1.  Rainfall conditions of the model test

    雨频/%雨强/(mm∙h−1前期降雨用时/s径流/(L∙h−1
    1033.2359406.8
    538.1341511.4
    244.4320648.2
    149.1306752.4
    下载: 导出CSV

    表 2  “7·10”后沟道物源颗粒累积百分含量

    Table 2.  Cumulative percentage of particles in the channel after “7·10”

    编号颗粒累积/%
    2006020520.50.250.075
    ZG110021.77.21.31.00.90.40.2
    ZG210016.95.91.41.71.40.50.2
    ZG310022.96.91.40.90.80.40.10
    平均10020.87.01.71.21.10.40.2
    下载: 导出CSV

    表 3  “8·20”后沟道物源颗粒累积百分含量

    Table 3.  Cumulative percentage of particles in the channel after “8·20”

    编号颗粒累积/%
    2006020520.50.250.075
    ZG110081.343.732.922.69.55.21.1
    ZG210079.953.040.633.317.07.34.1
    ZG310086.750.939.326.717.811.23.9
    平均10082.649.237.627.514.87.93.0
    下载: 导出CSV

    表 4  试验土分维值

    Table 4.  Fractal dimension of test soil

    试验堆积体分维值D范围类型
    “7·10”粗粒土2.250<2.60块碎石土
    “8·20”细粒土2.6392.60≤D<2.82碎石土
    双层上细下粗2.522<2.60块碎石土
    双层上粗下细2.596<2.60块碎石土
      注:其中分维D越小,粒度越粗,分维D越大,粒度越细。
    下载: 导出CSV

    表 5  单因素对照试验设计方案

    Table 5.  Single factor-controlled trial design scheme

    编号堆积体
    分维D
    降雨强度
    /(mm∙h-1
    编号堆积体
    分维D
    降雨强度
    /(mm∙h-1
    1-12.63933.23-12.52233.2
    1-238.13-238.1
    1-344.43-344.4
    1-449.13-449.1
    2-12.25033.24-12.59633.2
    2-238.14-238.1
    2-344.44-344.4
    2-449.14-449.1
    下载: 导出CSV

    表 6  沟道侵蚀数据统计

    Table 6.  Data statistics of the channel erosion

    Dq/(mm∙h−1V/m3Dq/(mm∙h−1)V/m3
    2.63933.20.015 902.52233.20.003 11
    38.10.033 1038.10.020 63
    44.40.066 2144.40.045 94
    49.10.145 7849.10.062 91
    2.25033.20.002 952.59633.20.001 90
    38.10.019 0738.10.020 91
    44.40.039 6344.40.116 03
    49.10.131 3349.10.132 82
    下载: 导出CSV

    表 7  雨强计算

    Table 7.  Calculation of rain intensity

    频率暴雨均值
    H/(mm∙h−1
    变差系数
    CV
    模比系数
    Kp
    暴雨设计值
    Hp/(mm∙h−1
    2%220.351.9242.2
    5%1.6736.7
    10%1.4732.3
    20%1.2627.7
    下载: 导出CSV

    表 8  锄头沟“8·20”后沟道物源颗粒累积百分含量

    Table 8.  Cumulative percentage of particles in Chutougou after “8·20”

    取样颗粒累积/%
    2005020520.50.250.075
    S110040.132.828.321.712.69.21.4
    S210059.438.532.921.39.56.21.1
    S310065.246.441.431.716.611.72.1
    平均10054.839.034.224.912.99.01.5
    下载: 导出CSV

    表 9  本文拟合计算结果

    Table 9.  The results of the fitting calculations in this paper

    沟道D雨频降雨强度
    /(mm∙h-1
    流通堆积区
    /km
    侵蚀量
    /(104 m3
    锄头沟2.57220%27.74.312.75
    10%32.324.46
    5%36.745.58
    2%42.299.23
    七盘沟2.25020%28.03.910.56
    10%33.222.03
    5%38.144.09
    2%44.4107.49
    下载: 导出CSV

    表 10  动储量计算

    Table 10.  Dynamic reserve calculation

    沟道设防标准动储量/(104 m3均值/(104 m3
    锄头沟V5%+2V10%+3V20%132.75122.91
    3V5%136.74
    V2%99.23
    七盘沟V5%+2V10%+3V20%119.83119.86
    3V5%132.27
    V2%107.49
    下载: 导出CSV

    表 11  计算结果比较

    Table 11.  Comparison of calculation results

    沟道计算方法动储量计算值/(104 m3)误差
    锄头沟实际调查统计128.82(“8·20”后)
    文献[2]公式98.42−23.60%
    文章公式122.91−4.59%
    七盘沟实际调查统计132.26(“7·10”后)
    文献[2]公式100.19−24.25%
    文章公式119.86−9.38%
    下载: 导出CSV
  • [1]

    XIONG J,TANG C,CHEN M,et al. Long-term changes in the landslide sediment supply capacity for debris flow occurrence in Wenchuan County,China[J]. CATENA,2021,203:105340. doi: 10.1016/j.catena.2021.105340

    [2]

    方群生,唐川,王毅,等. 汶川极震区泥石流动储量与总物源量计算方法研究[J]. 防灾减灾工程学报,2016,36(6):1008 − 1014. [FANG Qunsheng,TANG Chuan,WANG Yi,et al. A calculation method for predicting dynamic reserve and the total amount of material source of the debris flows in the Wenchuan meizoseismal area[J]. Journal of Disaster Prevention and Mitigation Engineering,2016,36(6):1008 − 1014. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2016.06.023

    [3]

    JAKOB M,BOVIS M,ODEN M. The significance of channel recharge rates for estimating debris-flow magnitude and frequency[J]. Earth Surface Processes and Landforms,2005,30(6):755 − 766. doi: 10.1002/esp.1188

    [4]

    乔建平,黄栋,杨宗佶,等. 汶川地震极震区泥石流物源动储量统计方法讨论[J]. 中国地质灾害与防治学报,2012,23(2):1 − 6. [QIAO Jianping,HUANG Dong,YANG Zongji,et al. Statistical method on dynamic reserve of debris flow's source materials in meizoseismal area of Wenchuan earthquake region[J]. The Chinese Journal of Geological Hazard and Control,2012,23(2):1 − 6. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2012.02.001

    [5]

    CHANG C W,LIN P S,TSAI C L. Estimation of sediment volume of debris flow caused by extreme rainfall in Taiwan[J]. Engineering Geology,2011,123(1/2):83 − 90.

    [6]

    NI H Y. Experimental study on initiation of gully-type debris flow based on artificial rainfall and channel runoff[J]. Environmental Earth Sciences,2015,73(10):6213 − 6227. doi: 10.1007/s12665-014-3845-x

    [7]

    林斌,张友谊,罗珂,等. 沟道松散物质起动模型试验及冲出量预测—四川省以北川青林沟为例[J]. 人民长江,2019,50(5):113 − 118. [LIN Bin,ZHANG Youyi,LUO Ke,et al. Model test of start-up of loose material in gully and runout volume prediction:Case of Qinglin ditch in Sichuan Province[J]. Yangtze River,2019,50(5):113 − 118. (in Chinese with English abstract) doi: 10.16232/j.cnki.1001-4179.2019.05.021

    [8]

    张静,田述军,侯鹏鹂. 基于面积-高程和面积-坡度积分的泥石流物质供给能力分析[J]. 中国地质灾害与防治学报,2021,32(4):9 − 16. [ZHANG Jing,TIAN Shujun,HOU Pengli. The material supply ability analysis of debris flows based on areahypsometric integral and area-gradient integral[J]. The Chinese Journal of Geological Hazard and Control,2021,32(4):9 − 16. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.04-02

    [9]

    张田田, 杨为民, 万飞鹏. 浑河断裂带地质灾害发育特征及其成因机制[J]. 吉林大学学报(地球科学版),2022,52(1):149 − 161. [ZHANG Tiantian, YANG Weimin, WAN Feipeng. Characteristics and formation mechanism of geohazards in Hunhe fault zone[J]. Journal of Jilin University (Earth Science Edition),2022,52(1):149 − 161. (in Chinese with English abstract)

    [10]

    胡卸文. 无泥型软弱层带物理力学特性[M]. 成都: 西南交通大学出版社, 2002

    HU Xiewen. Physical and mechanical properties of mudless weak zone[M]. Chengdu: Southwest Jiaotong University Press, 2002. (in Chinese)

    [11]

    潘华利,安笑,邓其娟,等. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程,2020,20(24):9733 − 9741. [PAN Huali,AN Xiao,DENG Qijuan,et al. Progress and prospects of research on debris flow solid source[J]. Science Technology and Engineering,2020,20(24):9733 − 9741. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2020.24.007

    [12]

    魏玉虎,胡卸文,齐光辉. 分形理论在土体粒度成分特征评价中的应用[J]. 安徽地质,2006,16(2):120 − 122. [WEI Yuhu,HU Xiewen,QI Guanghui. Application of fractal theory to evaluation of features of grain size composition of soil mass[J]. Geology of Anhui,2006,16(2):120 − 122. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-6157.2006.02.008

    [13]

    游勇, 柳金峰, 欧国强. 泥石流常用排导槽水力条件的比较[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2820 − 2825

    YOU Yong, LIU Jinfeng, OU Guoqiang. Comparison of hydraulic conditions among usual debris flow drainage canal[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Sup 1): 2820 − 2825. (in Chinese with English abstract)

    [14]

    李书钦,高建恩,邵辉,等. 选沙对水力侵蚀比尺模拟试验侵蚀过程相似的影响[J]. 水土保持学报,2009,23(3):6 − 10. [LI Shuqin,GAO Jianen,SHAO Hui,et al. Effects of model material selection on the similarity of erosion processes in hydraulic erosion simulation experiment[J]. Journal of Soil and Water Conservation,2009,23(3):6 − 10. (in Chinese with English abstract) doi: 10.3321/j.issn:1009-2242.2009.03.002

    [15]

    郭朝旭,崔鹏. 宽级配弱固结土体内细颗粒迁移规律研究评述[J]. 山地学报,2017,35(2):179 − 186. [GUO Chaoxu,CUI Peng. Fine particle migration in wide grading and poorly consolidated soil:An overview[J]. Mountain Research,2017,35(2):179 − 186. (in Chinese with English abstract) doi: 10.16089/j.cnki.1008-2786.000210

    [16]

    黄海,刘建康,杨东旭. 泥石流容重的时空变化特征及影响因素研究[J]. 水文地质工程地质,2020,47(2):161 − 168. [HUANG Hai,LIU Jiankang,YANG Dongxu. A study of the characteristics and influencing factors of spatial-temporal changes in the debris flow density[J]. Hydrogeology & Engineering Geology,2020,47(2):161 − 168. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907024

    [17]

    万飞鹏, 杨为民, 邱占林, 等. 甘肃岷县纳古呢沟滑坡-泥石流灾害链成灾机制及其演化[J/OL]. 中国地质, 2022: 1 − 19. (2022-06-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220621.1148.008.html.

    WAN Feipeng, YANG Weimin, QIU Zhanlin, et al. Disaster mechanism and evolution of Nagune gully landslide-debris flow disaster chain in Minxian County, Gansu Province[J/OL]. Geology in China, 2022: 1 − 19. (2022-06-22). https://kns.cnki.net/kcms/detail/11.1167.p.20220621.1148.008.html.(in Chinese with English abstract)

    [18]

    黄健, 胡卸文, 金涛, 等. 四川西昌“3·30”火烧区响水沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2022,33(3):15 − 22. [HUANG Jian, HU Xiewen, JIN Tao, et al. Mechanism of the post-fire debris flow of the Xiangshui gully in “3·30” fire area of Xichang, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):15 − 22. (in Chinese with English abstract)

  • 加载中

(18)

(11)

计量
  • 文章访问数:  748
  • PDF下载数:  51
  • 施引文献:  0
出版历程
收稿日期:  2022-02-09
修回日期:  2022-05-30
刊出日期:  2022-10-25

目录