Susceptibility assessment of geological hazards based on susceptibility quantitative factors: A case study in Qijiang District, Chongqing City
-
摘要:
綦江区是重庆市地质灾害高发区域,本研究以綦江区为研究区,根据区内地形地貌、地质构造并结合DEM数据,提取了斜坡单元内的斜坡结构、坡度、地灾点密度、工程地质岩组、距水系距离、岩层倾角和地质构造共7项主要致灾因子,进行量化分析并结合地质灾害野外现场核查和修正其各因子权重和分级赋值后,采用层次分析法进行斜坡单元地质灾害易发性评价,探索建立适合綦江区的地质灾害易发性评价体系。
Abstract:Qijiang District is a high-risk area for geological hazards in Chongqing. In this study, Qijiang District is selected as the research area. Based on the topography, geomorphology, geological structure, and DEM data of the region, seven main factors of geological hazards within slope units were extracted, including slope structure, slope gradient, density of geological disaster points, engineering geological lithology, distance to the water system, inclination angle of rock strata, and geological structure. These factors were quantitatively analyzed and combined with field inspection of geological hazards to revise the weights and grading of each factor. The analytic hierarchy process was used to evaluate the susceptibility of geological hazards within slope units. Through this process, this study aims to establish a geological disaster susceptibility evaluation system suitable for Qijiang District.
-
Key words:
- Qijiang District /
- slope unit /
- quantitative factor /
- analytic hierarchy process /
- susceptibility model
-
-
表 1 斜坡结构因子易发性量化指标
Table 1. Quantitative index of susceptibility factor of slope structure
地灾
类型斜坡
结构分级面积比 地灾面积
占比易发性指标
滑坡
数据近水平 0.06 0.01 −1.80 顺向坡 0.17 0.56 1.20 斜向坡 0.31 0.17 −0.60 横向坡 0.30 0.20 −0.40 逆向坡 0.16 0.06 −1.00 崩塌
数据近水平 0.06 0.004 −2.78 顺向坡 0.17 0.105 −0.47 斜向坡 0.31 0.340 0.09 横向坡 0.30 0.202 −0.39 逆向坡 0.16 0.349 0.76 表 2 孕灾体点密度因子易发性量化指标
Table 2. Quantitative index of susceptibility factor of the point density of the disaster-pregnant body
地灾
类型斜坡
结构分级面积比 地灾面积
占比易发性指标
滑坡
数据<0.2 0.47 0.14 −1.33 [0.2, 0.4) 0.34 0.30 −0.24 [0.4, 0.6) 0.11 0.24 0.61 [0.6, 0.8) 0.06 0.24 1.35 [0.8, 1.0] 0.02 0.08 1.47 崩塌
数据<0.2 0.47 0.49 0.30 [0.2, 0.4) 0.34 0.96 0.59 [0.4, 0.6) 0.11 0.05 0.03 [0.6, 0.8) 0.06 0.09 0.05 [0.8, 1.0] 0.02 0.05 0.03 表 3 工程地质岩组因子易发性量化指标
Table 3. Quantitative index of susceptibility factor of engineering geological lithology
地灾
类型地质
岩组主要岩性 分级面
积比地灾面积
占比易发性
指标滑坡
数据Ⅰ1 灰岩、白云岩 0.02 0.014 −0.49 Ⅰ2 含泥质灰岩 0.01 0.004 −1.22 Ⅱ1 泥岩、砂岩 0.17 0.175 0.08 Ⅱ2 砂岩夹页岩 0.63 0.761 0.20 Ⅱ3 厚层状砂岩 0.03 0.013 −0.80 Ⅲ1 泥灰岩夹粉砂岩、页岩 0.02 0.030 0.52 Ⅲ2 灰岩夹页岩 0.10 0.001 −4.55 Ⅲ3 页岩与灰岩 0.02 0.002 −2.40 崩塌
数据Ⅰ1 灰岩、白云岩 0.02 0.187 2.07 Ⅰ2 含泥质灰岩 0.01 0.007 −0.69 Ⅱ1 泥岩、砂岩 0.17 0.040 −1.40 Ⅱ2 砂岩夹页岩 0.63 0.491 −0.24 Ⅱ3 厚层状砂岩 0.03 / / Ⅲ1 泥灰岩夹粉砂岩、页岩 0.02 0.002 −1.92 Ⅲ2 灰岩夹页岩 0.10 0.273 1.05 Ⅲ3 页岩与灰岩 0.02 / / 表 4 坡度因子易发性量化指标
Table 4. Quantitative index of susceptibility factor of slope gradient
地灾类型 坡度/(°) 分级面积比 地灾面积占比 易发性指标 滑坡
数据<10 0.2199 0.161 −0.31 [10, 20) 0.3969 0.482 0.20 [20, 30) 0.2530 0.298 0.16 [30, 40) 0.0949 0.051 −0.61 [40, 50) 0.0264 0.007 −1.38 [50, 60) 0.0067 0.001 −1.62 [60, 70) 0.0017 / / >70 0.0005 / / 崩塌
数据<10 0.2199 0.015 −2.65 [10, 20) 0.3969 0.090 −1.48 [20, 30) 0.2530 0.203 −0.22 [30, 40) 0.0949 0.273 1.07 [40, 50) 0.0264 0.231 2.19 [50, 60) 0.0067 0.129 3.02 [60, 70) 0.0017 0.057 3.78 >70 0.0005 0.002 3.11 表 5 距水系距离因子易发性量化指标
Table 5. Quantitative index of susceptibility factor of distance from water system
地灾
类型距水系
距离/km分级面积比
地灾面积占比
易发性
指标滑坡
数据<0.2 0.33 0.612 0.64 [0.2, 0.4) 0.26 0.176 −0.39 [0.4, 0.6) 0.18 0.124 −0.38 [0.6, 0.8) 0.12 0.068 −0.57 [0.8, 1) 0.06 0.019 −1.16 ≥1.0 0.05 0.001 −4.35 表 6 岩层倾角因子易发性量化指标
Table 6. Quantitative index of susceptibility factor of inclination angle of rock strata
地灾
类型岩层
倾角/(°)分区面
积比地灾面积
占比易发性
指标滑坡
数据<10 0.191 0.225 0.18 [10, 20) 0.455 0.409 −0.09 [20, 30) 0.216 0.343 0.48 [30, 40) 0.081 0.015 −1.70 [40, 50) 0.038 0.005 −2.06 [50, 60) 0.015 0.002 −1.86 [60, 70) 0.003 / / >70 0.001 0.001 −0.47 崩塌
数据<10 0.191 0.4214 0.81 [10, 20) 0.455 0.1483 −1.10 [20, 30) 0.216 0.3421 0.48 [30, 40) 0.081 0.0666 −0.18 [40, 50) 0.038 0.0210 −0.59 [50, 60) 0.015 / / [60, 70) 0.003 0.0006 −1.83 >70 0.001 / / 表 7 地质构造因子易发性量化指标
Table 7. Quantitative index of susceptibility factor of geological structure
地灾
类型距断层
距离/km分区面
积比地灾面积
占比易发性
指标滑坡
数据(0, 0.5] 0.084 0.139 0.51 (0.5, 1] 0.079 0.079 0.01 (1, 1.5] 0.076 0.041 0.63 (1.5, 2] 0.075 0.068 0.08 (2, 2.5] 0.073 0.056 0.26 (2.5, 3] 0.068 0.085 0.23 (3, 3.5] 0.063 0.023 −0.99 (3.5, 4] 0.054 0.015 −1.30 (4, 4.5] 0.045 0.017 −0.95 (4.5, 5] 0.038 0.018 −1.77 >5 0.345 0.459 −0.29 崩塌
数据(0, 0.5] 0.084 0.072 0.09 (0.5, 1] 0.079 0.133 0.76 (1, 1.5] 0.076 0.069 0.14 (1.5, 2] 0.075 0.061 0.04 (2, 2.5] 0.073 0.003 −3.00 (2.5, 3] 0.068 0.228 −1.86 (3, 3.5] 0.063 0.134 −1.99 (3.5, 4] 0.054 0.088 −1.71 (4, 4.5] 0.045 0.105 −1.09 (4.5, 5] 0.038 0.004 −1.90 >5 0.345 0.103 −0.97 表 8 滑坡影响因素分级层次分析法权重取值表
Table 8. The weighted value table of the hierarchical analysis for landslide influencing factors
滑坡评价
因子权重 因子
分级易发性指标
易发性指标归一化
斜坡
结构0.20 近水平 −1.80 0.00 顺向坡 1.20 0.47 斜向坡 −0.60 0.19 横向坡 −0.40 0.22 逆向坡 −1.00 0.13 地灾点密度 0.17 <0.2 −1.33 0.00 [0.2, 0.4) −0.24 0.11 [0.4, 0.6) 0.61 0.22 [0.6, 0.8) 1.35 0.33 [0.8, 1.0) 1.47 0.34 工程地质岩组 0.15 Ⅰ1 −0.49 0.15 Ⅰ2 −1.22 0.12 Ⅱ1 0.08 0.17 Ⅱ2 0.20 0.17 Ⅱ3 −0.80 0.14 Ⅲ1 0.52 0.18 Ⅲ2 −4.55 0.00 Ⅲ3 −2.40 0.08 坡度
/(°)0.20 (0, 10] −0.31 0.21 (10, 20] 0.20 0.30 (20, 30] 0.16 0.29 (30, 40] −0.61 0.16 (40, 50] −1.38 0.04 (50, 60] −1.62 0.00 (60, 70] / / >70 / / 距水系距离
/km0.15 <0.2 0.64 0.25 [0.2, 0.4) −0.39 0.20 [0.4. 0.6) −0.38 0.20 [0.6, 0.8) −0.57 0.19 [0.8, 1.0) −1.16 0.16 ≥1.0 −4.35 0.00 岩层
倾角
/(°)0.08 (0, 10] 0.18 0.25 (10, 20] −0.09 0.22 (20, 30] 0.48 0.29 (30, 40] −1.70 0.04 (40, 50] −2.06 0.00 (50, 60] −1.86 0.02 (60, 70] / / >70 −0.47 0.18 距断层距离
/km0.05 (0, 0.5] 0.51 0.17 (0.5, 1] 0.01 0.13 (1, 1.5] −0.63 0.06 (1.5, 2] −0.08 0.12 (2, 2.5] −0.26 0.10 (2.5, 3] 0.23 0.15 (3, 3.5] −0.99 0.03 (3.5, 4] −1.30 0.00 (4, 4.5] −0.95 0.03 (4.5, 5] −0.77 0.05 >5 0.29 0.15 表 9 崩塌影响因素分级层次分析法权重取值表
Table 9. The weighted value table of the hierarchical analysis for the collapse influencing factors
崩塌评价
因子权重
因子
分级易发性指标
易发性指标归一化
斜坡结构 0.20 近水平 −2.78 0.00 顺向坡 −0.47 0.21 斜向坡 0.09 0.26 横向坡 −0.39 0.22 逆向坡 0.76 0.32 地灾点密度 0.15 <0.2 0.30 0.23 [0.2, 0.4) 0.59 0.45 [0.4, 0.6) 0.03 0.02 [0.6, 0.8) 0.05 0.04 [0.8, 1.0] 0.03 0.02 >1.0 0.30 0.23 工程地质
岩组0.20 Ⅰ1 2.07 0.38 Ⅰ2 −0.69 0.12 Ⅱ1 −1.40 0.05 Ⅱ2 −0.24 0.16 Ⅱ3 − − Ⅲ1 −1.92 0.00 Ⅲ2 1.05 0.29 Ⅲ3 − − 坡度
/(°)0.30 (0, 10] −2.65 0.00 (10, 20] −1.48 0.04 (20, 30] −0.22 0.08 (30, 40] 1.07 0.12 (40, 50] 2.19 0.16 (50, 60] 3.02 0.19 (60, 70] 3.78 0.21 >70 3.11 0.19 岩层
倾角
/(°)0.05 (0, 10] 0.81 0.31 (10, 20] −1.10 0.09 (20, 30] 0.48 0.27 (30, 40] −0.18 0.19 (40, 50] −0.59 0.14 (50, 60] − − (60, 70] −1.83 0 >70 − − 距断层距离
/km0.10 (0, 0.5] 0.09 0.10 (0.5, 1] 0.76 0.12 (1, 1.5] 0.14 0.10 (1.5, 2] 0.04 0.10 (2, 2.5] −3.00 0.00 (2.5, 3] −0.86 0.07 (3, 3.5] 0.99 0.13 (3.5, 4] 0.71 0.12 (4, 4.5] 1.09 0.14 (4.5, 5] −1.90 0.04 >5 −0.97 0.07 表 10 地质灾害易发性分区统计表
Table 10. Statistical table of geological disaster susceptibility zones
易发性等级 高易发区 中易发区 低易发区 非易发区 斜坡面积/km2 519.99 1021.29 598.93 47.27 占比/% 23.77 46.69 27.38 2.16 表 11 近年来灾(险)情易发性统计表
Table 11. Statistical table of geological disasters (hazards) susceptibility in recent years
易发分区 地灾点数量/个 占比/% 高易发区 30 58.82 中易发区 17 33.33 低易发区 4 7.85 非易发区 0 0 -
[1] 张倬元, 王士天, 王兰生. 工程地质分析原理[M]. 2版. 北京: 地质出版社, 1994
ZHANG Zhuoyuan. Principles of engineering geological analysis[M]. 2nd ed. Beijing: Geological Publishing House, 1994. (in Chinese )
[2] 李滨,殷跃平,高杨,等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5 − 13. [LI Bin,YIN Yueping,GAO Yang,et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5 − 13. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003060
LI Bin, YIN Yueping, GAO Yang, et al. Critical issues in rock avalanches in the Karst Mountain areas of southwest China[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 5-13. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003060
[3] YIN Yueping,WANG Fawu,SUN Ping. Landslide hazards triggered by the 2008 Wenchuan earthquake,Sichuan,China[J]. Landslides,2009,6(2):139 − 152. doi: 10.1007/s10346-009-0148-5
[4] 刘乐,杨智,孙健,等. 安徽黄山市徽州区地质灾害危险性评价研究[J]. 中国地质灾害与防治学报,2021,32(2):110 − 116. [LIU Le,YANG Zhi,SUN Jian,et al. Study on risk assessment of geological hazards in Huizhou District,Huangshan City,Anhui Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):110 − 116. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.02.15
LIU (L /Y), YANG Zhi, SUN Jian, et al. Study on risk assessment of geological hazards in Huizhou district, Huangshan city, Anhui Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 110-116. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.02.15
[5] 周粤,王运生,赵逊,等. 怒江支流迪麻洛河流域泥石流易发性评价[J]. 地质通报,2022,41(4):702 − 712. [ZHOU Yue,WANG Yunsheng,ZHAO Xun,et al. Susceptibility assessment of debris flow in Dimaluo River, branch of Nujiang River[J]. Geological Bulletin of China,2022,41(4):702 − 712. (in Chinese with English abstract)
ZHOU Yue, WANG Yunsheng, ZHAO Xun, et al. Susceptibility assessment of debris flow in Dimaluo River, branch of Nujiang River[J]. Geological Bulletin of China, 2022, 41(4)702-712(in Chinese with English abstract)
[6] 殷跃平,李滨,张田田,等. 印度查莫利“2·7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报,2021,32(3):1 − 8. [YIN Yueping,LI Bin,ZHANG Tiantian,et al. Study on flood disaster chain of “2·7” ice rock landslide in Chamorri,India[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):1 − 8. (in Chinese with English abstract)
YIN Yueping, LI Bin, ZHANG Tiantian, et al. Study on flood disaster chain of “2.7” ice rock landslide in Chamorri, India[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 1-8. (in Chinese with English abstract)
[7] 许冲. 汶川地震滑坡分布规律与危险性评价[J]. 岩石力学与工程学报,2012,31(2):432. [XU Chong. Distribution law and risk assessment for Wenchuan earthquake-triggered landslides[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):432. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.02.024
XU Chong. Distribution law and risk assessment for Wenchuan earthquake-triggered landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 432. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.02.024
[8] 孟祥瑞,裴向军,刘清华,等. GIS支持下基于因子分析法的都汶路沿线地质灾害易发性评价[J]. 中国地质灾害与防治学报,2016,27(3):106 − 115. [MENG Xiangrui,PEI Xiangjun,LIU Qinghua,et al. GIS-Based susceptibility assessment of geological hazards along the road from Dujiangyan to Wenchuan by factor analysis[J]. The Chinese Journal of Geological Hazard and Control,2016,27(3):106 − 115. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2016.03.16
MENG Xiangrui, PEI Xiangjun, LIU Qinghua, et al. GIS-Based susceptibility assessment of geological hazards along the road from Dujiangyan to Wenchuan by factor analysis[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(3): 106-115. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2016.03.16
[9] 田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24
TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2016.06.24
[10] 张瑛. “5·12”汶川大地震震裂山体灾害勘查评价与治理设计方法研究[D]. 成都: 成都理工大学, 2009
ZHANG Ying. Study on exploration, evaluation and treatment design method of mountain disaster caused by “5·12” Wenchuan earthquake[D]. Chengdu: Chengdu University of Technology, 2009. (in Chinese with English abstract)
[11] NILSEN T, BRABB E. 18 slope-stability studies in the San francisco bay region, California[J]. Reviews in Engineering Geology, 1977: 233-244.
[12] 黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展,2005,20(3):292 − 297. [HUANG Runqiu. Main characteristics of hign rock slopes in southwestern China and their dynamic evolution[J]. Advance in Earth Sciences,2005,20(3):292 − 297. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2005.03.005
HUANG Runqiu. Main characteristics of hign rock slopes in southwestern China and their dynamic evolution[J]. Advance in Earth Sciences, 2005, 20(3): 292-297. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2005.03.005
[13] 邓茂林, 许强, 郑光, 等. 基于离心模型试验的武隆鸡尾山滑坡形成机制研究[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3024 − 3035
DENG Maolin, XU Qiang, ZHENG Guang, et al. Study on the formation mechanism of Jiweishan landslide in Wulong, Chongqing, China-based on centrifugal model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3024 − 3035. (in Chinese with English abstract)
[14] 陈国庆,黄润秋,周辉,等. 边坡渐进破坏的动态强度折减法研究[J]. 岩土力学,2013,34(4):1140 − 1146. [CHEN Guoqing,HUANG Runqiu,ZHOU Hui,et al. Research on progressive failure for slope using dynamic strength reduction method[J]. Rock and Soil Mechanics,2013,34(4):1140 − 1146. (in Chinese with English abstract) doi: 10.16285/j.rsm.2013.04.040
CHEN Guoqing, HUANG Runqiu, ZHOU Hui, et al. Research on progressive failure for slope using dynamic strength reduction method[J]. Rock and Soil Mechanics, 2013, 34(4): 1140-1146. (in Chinese with English abstract) doi: 10.16285/j.rsm.2013.04.040
[15] 韩用顺, 梁川, 崔鹏, 等. 地形条件对次生山地灾害易发性分析[J]. 四川大学学报(工程科学版), 2010, 42(增刊1): 15 − 21
HAN Yongshun, LIANG Chuan, CUI Peng, et al. Susceptibility of mountain hazards triggered by Wenchuan earthquake to topographic factors[J]. Journal of Sichuan University (Engineering Science Edition), 2010, 42(Sup 1): 15 − 21. (in Chinese with English abstract)
[16] 黄河清,赵其华. 汶川地震诱发文家沟巨型滑坡-碎屑流基本特征及成因机制初步分析[J]. 工程地质学报,2010,18(2):168 − 177. [HUANG Heqing,ZHAO Qihua. Basic characteristics and preliminary mechanism analysis of large scale rockslide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,2010,18(2):168 − 177. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.02.003
HUANG Heqing, ZHAO Qihua. Basic characteristics and preliminary mechanism analysis of large scale rockslide-sturzstrom at Wenjiagou triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(2): 168-177. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2010.02.003
[17] 郑颖人,赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报,2004,23(19):3381 − 3388. [ZHENG Yingren,ZHAO Shangyi. Application of strength reduction fem in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(19):3381 − 3388. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.19.029
ZHENG Yingren, ZHAO Shangyi. Application of strength reduction fem in soil and rock slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19): 3381-3388. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.19.029
[18] 李文娟,邵海. 基于遥感影像多尺度分割与地质因子评价的滑坡易发性区划[J]. 中国地质灾害与防治学报,2021,32(2):94 − 99. [LI Wenjuan,SHAO Hai. Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):94 − 99. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
LI Wenjuan, SHAO Hai. Landslide susceptibility assessment based on multi-scale segmentation of remote sensing and geological factor evaluation[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 94-99. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.02.13
[19] 郭学飞,王志一,焦润成,等. 基于层次分析法的北京市地质环境质量综合评价[J]. 中国地质灾害与防治学报,2021,32(1):70 − 76. [GUO Xuefei,WANG Zhiyi,JIAO Runcheng,et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):70 − 76. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.01.10
GUO Xuefei, WANG Zhiyi, JIAO Runcheng, et al. Comprehensive evaluation method of geological environment quality in Beijing based on AHP[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(1): 70-76. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.01.10
-