中国地质环境监测院
中国地质灾害防治工程行业协会
主办

湖北赤壁东洲大道工程边坡渐进破坏机理分析

黄波, 鲁志雄, 何英东, 卢应发. 湖北赤壁东洲大道工程边坡渐进破坏机理分析[J]. 中国地质灾害与防治学报, 2022, 33(5): 20-28. doi: 10.16031/j.cnki.issn.1003-8035.202205012
引用本文: 黄波, 鲁志雄, 何英东, 卢应发. 湖北赤壁东洲大道工程边坡渐进破坏机理分析[J]. 中国地质灾害与防治学报, 2022, 33(5): 20-28. doi: 10.16031/j.cnki.issn.1003-8035.202205012
HUANG Bo, LU Zhixiong, HE Yingdong, LU Yingfa. Analysis of progressive failure mechanism of engineering slope at Dongzhou Avenue, Chibi of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 20-28. doi: 10.16031/j.cnki.issn.1003-8035.202205012
Citation: HUANG Bo, LU Zhixiong, HE Yingdong, LU Yingfa. Analysis of progressive failure mechanism of engineering slope at Dongzhou Avenue, Chibi of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(5): 20-28. doi: 10.16031/j.cnki.issn.1003-8035.202205012

湖北赤壁东洲大道工程边坡渐进破坏机理分析

  • 基金项目: 国家自然科学基金面上项目(41372363;41641027);三峡后续工作地质灾害防治项目(0001212015CC0005)
详细信息
    作者简介: 黄 波(1975-),男,汉族,湖北黄陂人,学士,研究方向为边坡工程。E-mail:344761893@qq.com
    通讯作者: 卢应发(1964-),男,汉族,湖北应城人,工学博士,教授,研究方向为岩土力学及边坡工程。E-mail:lyf77@126.com
  • 中图分类号: P642.22

Analysis of progressive failure mechanism of engineering slope at Dongzhou Avenue, Chibi of Hubei Province

More Information
  • 东洲大道工程边坡处于褶皱断裂复合部位,是典型降雨和工程施工扰动引起的渐进变形破坏。本文在剖析其特殊边坡工程地质结构基础上,并建立边坡计算水文地质模型,提出了牵引式边坡稳定分析的部分强度折减不平衡拉力法,其稳定性分析结果表明:首次破坏是由于边坡开挖,表层植被被剥落,水沿着断层进入滑体,从而产生了推移式破坏;二次破坏是在首次破坏产生的临空面基础上,致使滑体产生了牵引式的破坏模式;且部分强度折减不平衡拉力法计算结果与现场破坏形式一致。本文在牵引式边坡不平衡拉力法计算的基础上,建立了牵引式边坡破坏后以残余强度整体推移式控制力的计算法,并提出了相应的控制措施,多年的控制措施运行结果表明:该治理效果良好。

  • 加载中
  • 图 1  C段边坡加固及变形特征图

    Figure 1. 

    图 2  C段边坡二次变形特征及结构特征图

    Figure 2. 

    图 3  区域地质构造纲要图

    Figure 3. 

    图 4  工程边坡剖面岩体类型与特征图

    Figure 4. 

    图 5  工程边坡剖面结构特征

    Figure 5. 

    图 6  边坡不平衡推力法条块划分图

    Figure 6. 

    图 7  边坡局部推移式破坏条块计算图

    Figure 7. 

    图 8  边坡牵引式破坏条块计算划分图

    Figure 8. 

    图 9  边坡整体稳定分析图

    Figure 9. 

    表 1  推移式局部破坏计算结果

    Table 1.  Calculation results of push-type local failure

    条块
    序号
    条块底边长
    /m
    条块底边角
    /(°)
    下滑力
    /kN
    摩阻力
    /kN
    剩余下拉力
    /(kN·m−1
    13.6757.0198.1479.6561.1
    22.1017.9877.5167.6526.1
    32.1017.9869.6165.5413.9
    42.1521.7871.5566.3720.6
    52.1622.4473.9367.3726.6
    62.1421.1176.5368.7530.8
    72.1320.1378.2270.5332.8
    82.1118.5380.1871.3738.9
    92.0715.4278.0570.9337.6
    102.0715.4275.5369.2439.0
    112.0310.4471.8266.8931.3
    122.028.9866.1262.6023.3
    132.003.5158.8857.069.8
    142.001.0849.1349.13−0.1
    下载: 导出CSV

    表 2  边坡牵引式破坏计算结果

    Table 2.  Calculation results of slope traction failure

    条块
    序号
    条块底边长
    /m
    条块底边角
    /(°)
    下滑力
    /kN
    摩阻力
    /kN
    剩余下拉力
    /(kN·m−1
    13.002.2993.9992.991.00
    23.015.53103.0098.294.71
    33.0611.22122.53114.318.21
    43.0913.63147.50134.1013.40
    53.1316.70161.08143.1127.96
    63.1417.13165.10143.8631.24
    73.1819.35167.15141.3445.81
    83.2321.61169.34138.3051.04
    93.2924.26169.25133.6075.65
    103.1316.47196.26156.2591.01
    113.1316.57151.50186.420.00
    123.1316.67215.67195.0120.65
    133.1316.77245.50203.5941.91
    143.1416.88264.63205.3159.32
    153.1416.97290.57210.0288.55
    163.1417.08195.99216.290.00
    173.1417.18223.42215.537.89
    183.1417.29232.53215.5812.96
    193.1417.39238.67215.2316.45
    203.1517.49244.47213.5120.95
    213.1517.60250.86212.7122.15
    223.1517.70257.45212.0925.36
    233.1517.80266.56212.5828.98
    243.1517.90274.46213.9530.51
    253.1517.99280.96212.8738.10
    263.1618.13284.68209.1845.50
    273.1618.46285.97202.8353.15
    288.6078.86288.19197.8860.30
    下载: 导出CSV

    表 3  边坡整体稳定性计算结果

    Table 3.  Calculation results of the overall stability of the slope

    条块
    序号
    条块底边长
    /m
    条块底边角
    /(°)
    下滑力
    /kN
    摩阻力
    /kN
    剩余下拉力
    /(kN·m−1
    13.002.2993.9992.99106.1
    23.015.53103.0098.29385.2
    33.0611.22122.53114.31443.6
    43.0913.63147.50134.10293.9
    53.1316.70161.08143.11309.7
    63.1417.13165.10143.86318.3
    73.1819.35167.15141.34291.9
    83.2321.61169.34138.30302.0
    93.2924.26169.25133.60288.8
    103.1316.47196.26156.25292.8
    113.1316.57151.50186.42305.1
    123.1316.67215.67195.01294.3
    133.1316.77245.50203.59296.9
    143.1416.88264.63205.31325.0
    153.1416.97290.57210.02292.1
    163.1417.08195.99216.29307.6
    173.1417.18223.42215.53298.0
    183.1417.29232.53215.58266.3
    193.1417.39238.67215.23300.2
    203.1517.49244.47213.51220.5
    213.1517.60250.86212.71223.0
    223.1517.70257.45212.09241.5
    233.1517.80266.56212.58250.6
    243.1517.90274.46213.95231.1
    253.1517.99280.96212.87219.8
    263.1618.13284.68209.18191.3
    273.1618.46285.97202.83132.5
    288.6078.86288.19197.8847.4
    下载: 导出CSV
  • [1]

    BISHOP A W. The use of the slip circle in the stability analysis of slopes[J]. Géotechnique,1955,5(1):7 − 17.

    [2]

    Janbu. Slope stability computations: In Embankment-dam Engineering. Textbook. Eds. R.C. Hirschfeld and S.J. Poulos. JOHN WILEY AND SONS INC., PUB., NY, 1973, 40P[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 12(4).

    [3]

    KELESOGLU M K. The evaluation of three-dimensional effects on slope stability by the strength reduction method[J]. KSCE Journal of Civil Engineering,2016,20(1):229 − 242. doi: 10.1007/s12205-015-0686-4

    [4]

    NIAN T K,HUANG R Q,WAN S,et al. Three-dimensional strength-reduction finite element analysis of slopes:Geometric effects[J]. Canadian Geotechnical Journal,2012,49(5):574 − 588. doi: 10.1139/t2012-014

    [5]

    殷跃平,王文沛,张楠,等. 强震区高位滑坡远程灾害特征研究—以四川茂县新磨滑坡为例[J]. 中国地质,2017,44(5):827 − 841. [YIN Yueping,WANG Wenpei,ZHANG Nan,et al. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:A case study of the Xinmo landslide in Maoxian County,Sichuan Province[J]. Geology in China,2017,44(5):827 − 841. (in Chinese with English abstract) doi: 10.12029/gc20170501

    [6]

    殷跃平, 朱赛楠. 李滨青藏高原高位远程地质灾害[M]. 北京: 科学出版社, 2021

    YIN Yueping, ZHU Sainan, LI Bin. High-level remote geological disasters in Qinghai-Tibet Plateau[M]. Beijing: Science Press, 2021. (in Chinese)

    [7]

    黄波林,殷跃平. 水库区滑坡涌浪风险评估技术研究[J]. 岩石力学与工程学报,2018,37(3):621 − 629. [HUANG Bolin,YIN Yueping. Risk assessment research on impulse wave generated by landslide in reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):621 − 629. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2017.1047

    [8]

    CHEN H R,QIN S Q,XUE L,et al. A physical model predicting instability of rock slopes with locked segments along a potential slip surface[J]. Engineering Geology,2018,242:34 − 43. doi: 10.1016/j.enggeo.2018.05.012

    [9]

    XUE L,QIN S Q,PAN X H,et al. A possible explanation of the stair-step brittle deformation evolutionary pattern of a rockslide[J]. Geomatics,Natural Hazards and Risk,2017,8(2):1456 − 1476. doi: 10.1080/19475705.2017.1345793

    [10]

    杨百存,秦四清,薛雷,等. 锁固段损伤过程中的能量转化与分配原理[J]. 东北大学学报(自然科学版),2020,41(7):975 − 981. [YANG Baicun,QIN Siqing,XUE Lei,et al. Energy Conversion and Allocation Principle During the Damage Process of Locked SegmentFull text replacement[J]. Journal of Northeastern University (Natural Science),2020,41(7):975 − 981. (in Chinese with English abstract)

    [11]

    LU Y F. Deformation and failure mechanism of slope in three dimensions[J]. Journal of Rock Mechanics and Geotechnical Engineering,2015,7(2):109 − 119. doi: 10.1016/j.jrmge.2015.02.008

    [12]

    卢应发. 一种新的本构模型及参数标定[J]. 岩土力学,2016,37(8):2138 − 2144. [LU Yingfa. A new constitutive model and its parameter calibration[J]. Rock and Soil Mechanics,2016,37(8):2138 − 2144. (in Chinese with English abstract) doi: 10.16285/j.rsm.2016.08.002

    [13]

    闫亚景,文宝萍,黄志全. 可溶盐对兰州非饱和重塑黄土抗剪强度的影响[J]. 岩土力学,2017,38(10):2881 − 2887. [YAN Yajing,WEN Baoping,HUANG Zhiquan. Effect of soluble salts on shear strength of unsaturated remoulded loess in Lanzhou City[J]. Rock and Soil Mechanics,2017,38(10):2881 − 2887. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.10.014

    [14]

    吴顺川,韩龙强,李志鹏,等. 基于滑面应力状态的边坡安全系数确定方法探讨[J]. 中国矿业大学学报,2018,47(4):719 − 726. [WU Shunchuan,HAN Longqiang,LI Zhipeng,et al. Discussion on the methods for determining slope safety factor based on stress state of the sliding surface[J]. Journal of China University of Mining & Technology,2018,47(4):719 − 726. (in Chinese with English abstract) doi: 10.13247/j.cnki.jcumt.000879

    [15]

    卢应发,黄学斌,刘德富. 边坡力的分布特征和稳定性分析[J]. 岩土工程学报,2017,39(7):1321 − 1329. [LU Yingfa,HUANG Xuebin,LIU Defu. Distribution characteristics of force and stability analysis of slope[J]. Chinese Journal of Geotechnical Engineering,2017,39(7):1321 − 1329. (in Chinese with English abstract) doi: 10.11779/CJGE201707019

    [16]

    卢应发, 刘德富, 石峻峰. 基于牵引式斜坡变形破坏机理的稳定性分析和预测预警方法: 中国, CN103942446B[P]. 2017-02-22.

    LU Yingfa, LIU Defu, SHI Junfeng. Stability analysis and prediction and early warning method based on the deformation failure mechanism of traction slope: China, CN103942446B[P]. 2017-02-22. (in Chinese)

  • 加载中

(9)

(3)

计量
  • 文章访问数:  939
  • PDF下载数:  7
  • 施引文献:  0
出版历程
收稿日期:  2022-05-09
修回日期:  2022-07-09
刊出日期:  2022-10-25

目录