-
摘要:
森林火灾后因火烧迹地土壤斥水性,导致坡面径流和土壤可蚀性增强,提高了火后泥石流易发性,而土壤团聚体稳定性是影响土壤入渗能力和侵蚀敏感性的关键指标。目前常用于火烧迹地土壤团聚体稳定性测定的水滴冲击测定方法(counting the number of water drop impacts,CND),不适用于原位测定且耗时较长(滴定一组团聚体需要数小时)。因此文章提出一种基于冲击振荡破坏效应的团聚体稳定性测定方法(shock and vibration damage method,SVD)。充分考虑容重、有机质含量和斥水性对土壤团聚体稳定性的影响,通过室内火烧模拟试验,制备了13种类型的土壤团聚体。采用自制的试验仪器进行SVD法正交试验测定土壤团聚体质量损失率,并与传统CND法测得的破坏团聚体的水滴数量进行对比。结果表明:SVD法的测定MT-6方案(冲击高度1 m、容器容水量40%、冲击5次、测定团聚体20颗)与CND法的测定结果具有很强的一致性(Kendall系数=0.797)和相关性(R2=0.634),测定时间较短(测定一组团聚体约5 min),且测定结果区分度较好(约62%的团聚体MLR位于区分度良好的40%~60%区间),将其作为SVD法的最优测定方案。此外,SVD法试验装置结构简单、便携易拆卸,可用于原位快速且定量地区分火烧迹地不同火烈度下土壤团聚体稳定性水平,对火烧迹地土壤侵蚀、水土流失治理以及火后泥石流起动机理研究具有重要指导意义。
Abstract:Due to soil repellency in burned areas, slope runoff and soil erodibility escalates following forest fires, increasing the vulnerability to post-fire debris flows. Soil aggregate stability is a critical determinant of soil infiltration capacity and erosion susceptibility. The prevalent method of assessing soil aggregate stability in burned areas, the counting the number of water drop impacts (CND) method, is time-intensive and impractical for in-situ measurements. In response, this study introduces a novel technique based on the shock and vibration damage (SVD) effect for evaluating soil aggregate stability in burned areas. Thirteen distinct soil aggregate types were meticulously prepared for indoor simulated fire testing, with due consideration to factors such as bulk weight, organic matter content, and water repellency, which influence stability of soil aggregates. Employing a custom-built test apparatus, the mass loss rate (MLR) of soil aggregates was determined through orthogonal experiments using the SVD method and compared against the standard CND technique's quantification of water droplet-induced aggregate destruction. The findings demonstrated that SVD method, employing Test Scheme 6 (testing 20 aggregates, 1-meter impact height, 40% water content, and five impacts), exhibits excellent agreement (Kendall coefficient = 0.797) and correlation (R2 = 0.634) with CND method outcomes. This testing scheme, characterized by rapid determination and effective discrimination, is identified as the optimal testing approach. The SVD testing apparatus is straightforward, portable, and easily disassembled, rendering it suitable for on-site use. It can be used to distinguish the stability level of soil aggregates swiftly and quantitatively under various fire intensities in burned areas in situ, which is an important guiding significance for the study of soil erosion, erosion control, and post-fire debris flow initiation mechanism in burned areas.
-
-
表 1 供试土壤主要物理化学性质
Table 1. Key physical and chemical properties of the studied soils
指标 高温亲水组 天然对照组 轻度斥水组 强烈−极端斥水组 ST-1 ST-2 ST-3 ST-4 ST-5 ST-6 ST-7 ST-8 ST-9 ST-10 ST-11 ST-12 ST-13 温度/(°C) 600 600 600 常温 常温 常温 200 200 400 200 400 200 400 时间/min 120 120 120 \ \ \ 5 60 5 30 5 60 5 深度/cm 0~2 2~4 4~6 0~2 2~4 4~6 0~2 2~4 4~6 0~2 2~4 0~2 0~2 斥水性 亲水 亲水 亲水 强烈
斥水轻度
斥水亲水 轻度
斥水轻度
斥水轻度
斥水强烈
斥水强烈
斥水严重
斥水极端
斥水干容重/(g·cm−3) 0.95 1.04 1.16 0.95 1.04 1.16 0.95 1.04 1.16 0.95 1.04 0.95 0.95 初始有机质含量/% 14.0 9.48 6.93 14.0 9.48 6.93 14.0 9.48 6.93 14.0 9.48 14.0 14.0 注:亲水(WDPT≤5 s),轻度斥水(WDPT:5~60 s),强烈斥水(WDPT:60~600 s),严重斥水(WDPT:600~3600 s),极端斥水(WDPT:>3600 s)[23],ST-1~13代表团聚体类型编号。 表 2 团聚体稳定性测定正交试验设计表
Table 2. Table for orthogonal test design for determining aggregation stability
测定方法编号 A/% B/cm C/次 D/颗 测定方法编号 A/% B/cm C/次 D/颗 MT-01 40 80 10 10 MT-14 80 100 1 10 MT-02 100 50 3 10 MT-15 20 100 10 25 MT-03 80 50 5 15 MT-16 20 50 1 5 MT-04 20 80 15 15 MT-17 60 80 5 5 MT-05 60 50 10 20 MT-18 100 200 5 25 MT-06 40 100 5 20 MT-19 20 150 5 10 MT-07 80 80 3 25 MT-20 60 200 15 10 MT-08 100 80 1 20 MT-21 40 200 1 15 MT-09 100 150 10 15 MT-22 80 200 10 5 MT-10 80 150 15 20 MT-23 100 100 15 5 MT-11 60 150 1 25 MT-24 20 200 3 20 MT-12 40 150 3 5 MT-25 60 100 3 15 MT-13 40 50 15 25 注:影响因素A是容器容水量,B是冲击高度,C是冲击次数,D单次测试所需土壤团聚体颗数,MT-1~25代表SVD法试验方案。 表 3 SVD法各方案与CND法的一致性检验结果
Table 3. Consistency test results between various schemes of the SVD method and the CND method
方案 Kendall系数 P 方案 Kendall系数 P 方案 Kendall系数 P 方案 Kendall系数 P MT-1 0.827 0.071 MT-8 0.687 0.170 MT-15 0.791 0.089 MT-22 0.726 0.134 MT-2 0.299 0.845 MT-9 0.709 0.149 MT-16 0.918 0.037 MT-23 0.684 0.173 MT-3 0.495 0.456 MT-10 0.723 0.137 MT-17 0.581 0.304 MT-24 0.679 0.178 MT-4 0.654 0.206 MT-11 0.890 0.045 MT-18 0.874 0.051 MT-25 0.604 0.270 MT-5 0.761 0.108 MT-12 0.874 0.051 MT-19 0.659 0.199 MT-6、
MT-11、
MT-160.797 0.000 MT-6 0.904 0.041 MT-13 0.780 0.095 MT-20 0.815 0.076 MT-7 0.728 0.133 MT-14 0.659 0.199 MT-21 0.794 0.087 注:表中P为显著性,P值小于0.05,说明具有显著一致性;Kendall系数值代表一致性程度(较差:<0.2,一般:0.2~0.4,中等:0.4~0.6,较强:0.6~0.8,很强:0.8~1.0)[25]。 -
[1] 胡卸文,金涛,殷万清,等. 西昌市经久乡森林火灾火烧区特点及火后泥石流易发性评价[J]. 工程地质学报,2020,28(4):762 − 771. [HU Xiewen,JIN Tao,YIN Wanqing,et al. The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township,xichang City[J]. Journal of Engineering Geology,2020,28(4):762 − 771. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2020-224
doi: 10.13544/j.cnki.jeg.2020-224HU Xiewen, JIN Tao, YIN Wanqing, et al . The characteristics of forest fire burned area and susceptibility assessment of post-fire debris flow in jingjiu township, xichang City[J]. Journal of Engineering Geology,2020 ,28 (4 ):762 −771 . (in Chinese with English abstract)[2] BADÍA-VILLAS D,GONZÁLEZ-PÉREZ J A,AZNAR J M,et al. Changes in water repellency,aggregation and organic matter of a mollic horizon burned in laboratory:Soil depth affected by fire[J]. Geoderma,2014,213:400 − 407. doi: 10.1016/j.geoderma.2013.08.038
[3] VARELA M E,BENITO E,KEIZER J J. Effects of wildfire and laboratory heating on soil aggregate stability of pine forests in Galicia:The role of lithology,soil organic matter content and water repellency[J]. CATENA,2010,83(2/3):127 − 134.
[4] ZAVALA L M,GRANGED A J P,JORDÁN A,et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions[J]. Geoderma,2010,158(3/4):366 − 374.
[5] JORDÁN A,ZAVALA L M,MATAIX-SOLERA J,et al. Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils[J]. CATENA,2011,84(3):136 − 147. doi: 10.1016/j.catena.2010.10.007
[6] WIETING C,EBEL B A,SINGHA K. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory[J]. Journal of Hydrology:Regional Studies,2017,13:43 − 57.
[7] JIMÉNEZ-PINILLA P,MATAIX-SOLERA J,ARCENEGUI V,et al. Advances in the knowledge of how heating can affect aggregate stability in Mediterranean soils:a XDR and SEM-EDX approach[J]. CATENA,2016,147:315 − 324. doi: 10.1016/j.catena.2016.07.036
[8] 胡卸文,王严,杨瀛. 火后泥石流成灾特点及研究现状[J]. 工程地质学报,2018,26(6):1562 − 1573. [HU Xiewen,WANG Yan,YANG Ying. Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018,26(6):1562 − 1573. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2018-073
doi: 10.13544/j.cnki.jeg.2018-073HU Xiewen, WANG Yan, YANG Ying . Research actuality and evolution mechanism of post-fire debris flow[J]. Journal of Engineering Geology,2018 ,26 (6 ):1562 −1573 . (in Chinese with English abstract)[9] 郭军玲,王虹艳,卢升高. 亚热带土壤团聚体测定方法的比较研究[J]. 土壤通报,2010,41(3):542 − 546. [GUO Junling,WANG Hongyan,LU Shenggao. Comparative studies on measurement methods for aggregate stability of subtropical soils[J]. Chinese Journal of Soil Science,2010,41(3):542 − 546. (in Chinese with English abstract) doi: 10.19336/j.cnki.trtb.2010.03.007
doi: 10.19336/j.cnki.trtb.2010.03.007GUO Junling, WANG Hongyan, LU Shenggao . Comparative studies on measurement methods for aggregate stability of subtropical soils[J]. Chinese Journal of Soil Science,2010 ,41 (3 ):542 −546 . (in Chinese with English abstract)[10] SCHOMAKERS, J., et al . Measurement of soil aggregate stability using low intesity ultrasonic vibration[J]. Spanish Journal of Soil Science,2011 ,1 (1 ):8 −19 .SCHOMAKERS, J., et al. Measurement of soil aggregate stability using low intesity ultrasonic vibration[J]. Spanish Journal of Soil Science,2011,1(1):8 − 19.
[11] AKSAKAL E L,ANGIN I,SARI S. A new approach for calculating aggregate stability:mean weight aggregate stability (MWAS)[J]. CATENA,2020,194:104708. doi: 10.1016/j.catena.2020.104708
[12] AMÉZKETA E. Soil aggregate stability:a review[J]. Journal of Sustainable Agriculture,1999,14(2/3):83 − 151.
[13] 黄悦等,基于高能水分特性法的土壤团聚体结构稳定性研究进展[J]. 水土保持研究,2022 :1 − 8. [HUANG Yue,et al. Progress in Research on Structural Stability of Soil Aggregates Based on High Energy Moisture Characteristic Method[J]. Research of Soil and Water Conservation,2022 :1 − 8. (in Chinese with English abstract)
HUANG Yue, et al. Progress in Research on Structural Stability of Soil Aggregates Based on High Energy Moisture Characteristic Method[J]. Research of Soil and Water Conservation, 2022 : 1 − 8. (in Chinese with English abstract) [14] THOMAZ E L. Effects of fire on the aggregate stability of clayey soils:A meta-analysis[J]. Earth-Science Reviews,2021,221:103802. doi: 10.1016/j.earscirev.2021.103802
[15] 成小彬. 水锤振荡器的关键技术研究与结构设计[D]. 北京:中国石油大学(北京),2017. [CHENG Xiaobin. Research on key technology of water hammer oscillator and its structural design[D]. Beijing:china university of petroleum (bei jing),2017. (in Chinese with English abstract)
CHENG Xiaobin. Research on key technology of water hammer oscillator and its structural design[D]. Beijing: china university of petroleum (bei jing), 2017. (in Chinese with English abstract) [16] IMESON A C,VIS M. Assessing soil aggregate stability by water-drop impact and ultrasonic dispersion[J]. Geoderma,1984,34(3/4):185 − 200.
[17] MCCALLA T M. Water-drop method of determining stability of soil structure[J]. Soil Science,1944,58(2):117 − 122. doi: 10.1097/00010694-194408000-00002
[18] ALMAJMAIE A,HARDIE M,ACUNA T,et al. Evaluation of methods for determining soil aggregate stability[J]. Soil and Tillage Research,2017,167:39 − 45. doi: 10.1016/j.still.2016.11.003
[19] RAWLINS B G,TURNER G,WRAGG J,et al. An improved method for measurement of soil aggregate stability using laser granulometry applied at regional scale[J]. European Journal of Soil Science,2015,66(3):604 − 614. doi: 10.1111/ejss.12250
[20] 张绍科,胡卸文,王严,等. 四川省冕宁县华岩子沟火后泥石流成灾机理[J]. 中国地质灾害与防治学报,2021,32(5):79 − 85. [ZHANG Shaoke,HU Xiewen,WANG Yan,et al. Disaster mechanism of post-fire debris flow in Huayanzi gully,Mianning County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):79 − 85. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09
doi: 10.16031/j.cnki.issn.1003-8035.2021.05-09ZHANG Shaoke, HU Xiewen, WANG Yan, et al . Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2021 ,32 (5 ):79 −85 . (in Chinese with English abstract)[21] 胡彩莉,马玉贞,郭超,等. 烧失量法测定土壤有机质含量的实验条件探究[J]. 地球与环境,2016,44(1):110 − 118. [HU Caili,MA Yuzhen,GUO Chao,et al. Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment,2016,44(1):110 − 118. (in Chinese with English abstract) doi: 10.14050/j.cnki.1672-9250.2016.01.015
doi: 10.14050/j.cnki.1672-9250.2016.01.015HU Caili, MA Yuzhen, GUO Chao, et al . Optimization of the experiment conditions for estimating organic matter content with loss-on-ignition method[J]. Earth and Environment,2016 ,44 (1 ):110 −118 . (in Chinese with English abstract)[22] 孔凡伟. 如何精测土壤容重[J]. 黑龙江农业科学,2010,(10):178. [KONG Fanwei. How to accurately measure soil bulk density[J]. Heilongjiang Agricultural Sciences,2010,(10):178. (in Chinese)
KONG Fanwei . How to accurately measure soil bulk density[J]. Heilongjiang Agricultural Sciences,2010 , (10 ):178 . (in Chinese)[23] BISDOM E B A,DEKKER L W,TH SCHOUTE J F. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure[J]. Geoderma,1993,56(1/2/3/4):105 − 118.
[24] 程佳会,范成伟,徐晓兵,等. 正交试验下黏土导热系数影响分析[J]. 江西建材,2022(3):34 − 36. [CHENG Jiahui,FAN Chengwei,XU Xiaobing,et al. Influence analysis of thermal conductivity of clay under orthogonal test[J]. Jiangxi Building Materials,2022(3):34 − 36. (in Chinese with English abstract)
CHENG Jiahui, FAN Chengwei, XU Xiaobing, et al . Influence analysis of thermal conductivity of clay under orthogonal test[J]. Jiangxi Building Materials,2022 (3 ):34 −36 . (in Chinese with English abstract)[25] 侯勋,方刚. 基于肯德尔系数的改进ID3算法[J]. 科学技术创新,2021,(22):21 − 22. [HOU Xun,FANG Gang. Improved ID3 algorithm based on Kendall coefficient[J]. Scientific and Technological Innovation,2021,(22):21 − 22. (in Chinese)
HOU Xun, FANG Gang . Improved ID3 algorithm based on Kendall coefficient[J]. Scientific and Technological Innovation,2021 , (22 ):21 −22 . (in Chinese)[26] LI Qiwen,AHN S,KIM T,et al. Post-fire impacts of vegetation burning on soil properties and water repellency in a pine forest,South Korea a[J]. Forests,2021,12(6):708,2021
[27] 李萌. 热声制冷机板叠内工质流动与换热规律研究[D]. 包头:内蒙古科技大学,2021. [LI Meng. Study on the flow and heat transfer laws of working medium in the stack of thermoacoustic refrigerator[D]. Baotou:Inner Mongolia University of Science & Technology,2021. (in Chinese with English abstract)
LI Meng. Study on the flow and heat transfer laws of working medium in the stack of thermoacoustic refrigerator[D]. Baotou: Inner Mongolia University of Science & Technology, 2021. (in Chinese with English abstract) -