中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析

王康, 畅俊斌, 李晓科, 朱文峰, 卢啸, 刘慧. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报, 2023, 34(6): 47-56. doi: 10.16031/j.cnki.issn.1003-8035.202303037
引用本文: 王康, 畅俊斌, 李晓科, 朱文峰, 卢啸, 刘慧. 基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析——以延安二庄科滑坡为例[J]. 中国地质灾害与防治学报, 2023, 34(6): 47-56. doi: 10.16031/j.cnki.issn.1003-8035.202303037
WANG Kang, CHANG Junbin, LI Xiaoke, ZHU Wenfeng, LU Xiao, LIU Hui. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47-56. doi: 10.16031/j.cnki.issn.1003-8035.202303037
Citation: WANG Kang, CHANG Junbin, LI Xiaoke, ZHU Wenfeng, LU Xiao, LIU Hui. Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(6): 47-56. doi: 10.16031/j.cnki.issn.1003-8035.202303037

基于水文过程和应力应变耦合的陕北黄土滑坡复活机理分析

  • 基金项目: 陕西地矿集团有限公司科研专项资金项目(KY202116)
详细信息
    作者简介: 王 康(1987-),男,地下水科学与工程专业,本科,高级工程师,从事水工环地质调查及地质灾害防治工作。E-mail:276636972@qq.com
    通讯作者: 畅俊斌(1968-),男,水工地质专业,本科,正高级工程师,从事水工环地质调查及地质灾害防治工作。E-mail:290544312@qq.com
  • 中图分类号: P642.22

Mechanistic analysis of loess landslide reactivation in northern Shaanxi based on coupled numerical modeling of hydrological processes and stress strain evolution: A case study of the Erzhuangkelandslide in Yan’an

More Information
  • 二庄科滑坡是典型受降雨影响的滑坡,降雨改变了老滑坡的渗流场,削弱基质吸力和土体抗剪强度,导致内部产生张拉裂缝,引发整体滑动和局部大变形,但现有研究很少考虑二庄科滑坡的渗流场与应力场的相互作用。文章基于实际工程地质灾害背景,在现场监测数据和地形物理参数的基础上,建立了几何计算模型,并进行水力耦合数值模拟。通过研究滑坡内部饱和度和孔压的变化规律来探讨降雨入渗规律,从应力位移的角度探讨降雨强度对滑坡复活的影响规律。此外,为了验证方法的准确性和可行性,选取了滑坡实测点位并找到了数值模型对应位置,对位移、土压力和饱和度三个方面进行了对比分析,得出数值模型能较好地反映实际情况的结论。通过数值模拟耦合计算和降雨条件下老滑坡复活机制的研究,对实测数据进行解释并分析滑坡复活过程,为后续工程预警和减灾工作提供理论基础和技术指导。

  • 加载中
  • 图 1  二庄科滑坡全貌

    Figure 1. 

    图 2  工程地质灾害监测点分布图[10]

    Figure 2. 

    图 3  二庄科滑坡FLAC3D建模

    Figure 3. 

    图 4  特大暴雨情况下,孔隙压力及饱和度变化情况

    Figure 4. 

    图 5  切应力分布图

    Figure 5. 

    图 6  滑坡位移对比

    Figure 6. 

    图 7  G6、G7监测点在降雨过程中的竖向位移及模拟结果

    Figure 7. 

    图 8  G6、G7监测点在降雨过程中的水平位移及模拟结果

    Figure 8. 

    图 9  G7监测点在降雨过程中的竖向土压力及模拟结果

    Figure 9. 

    图 10  G7监测点深度2 m处在降雨过程中的饱和度及模拟结果

    Figure 10. 

    表 1  模型参数设置

    Table 1.  Table of model parameter settings

    土体类型 密度/(kg∙m−3 体积模量/Pa 孔隙率 饱和渗透系数/(m∙s−1 内摩擦角/(°) 黏聚力/Pa 剪切模量/Pa 初始孔隙压力/Pa
    Qh 1900 2×108 0.40 3.9×10−4 18 3×104 21977
    Qp 1900 2×108 0.40 3.9×10−4 18 3×104 21977
    砂岩 2800 1×109 0.15 1×10−12 36 1.2×106 3×108 0
    下载: 导出CSV

    表 2  G6点竖向位移实际模拟数据对比

    Table 2.  Comparison of actual and simulated vertical displacements for monitoring point G6

    日期 2021-10-28 2021-10-29 2021-10-30 2021-10-31
    实际数据/mm 239.01 241.03 242.00 243.04
    模拟数据/mm 202.98 209.76 214.31 219.05
    误差/% 15.07 12.97 11.44 9.87
    下载: 导出CSV

    表 3  G7点竖向位移实际模拟数据对比

    Table 3.  Comparison of actual and simulated vertical displacements for monitoring point G7

    日期 2021-10-10 2021-10-11 2021-10-12 2021-10-13
    实际数据/mm −2.014 −2.991 −4.028 −4.028
    模拟数据/mm 1.630 2.370 2.610 2.780
    误差/% 180.93 179.24 164.80 169.02
    下载: 导出CSV

    表 4  G6点水平位移实际模拟数据对比

    Table 4.  Comparison of actual and simulated horizontal displacements for monitoring point G6

    日期 2021-10-15 2021-10-16 2021-10-17 2021-10-18
    实际数据/mm 109.50 111.35 113.32 117.00
    模拟数据/mm 102.85 106.15 107.12 107.97
    误差/% 6.07 4.67 5.47 7.72
    下载: 导出CSV

    表 5  G7点水平位移实际模拟数据对比

    Table 5.  Comparison of actual and simulated horizontal displacements for monitoring point G7

    日期 2021-10-12 2021-10-13 2021-10-14 2021-10-15
    实际数据/mm 9.249 14.798 20.348 24.093
    模拟数据/mm 4.090 4.170 4.400 5.670
    误差/% 55.7 71.82 78.38 76.47
    下载: 导出CSV
  • [1]

    刘子振. 持续降雨入渗非饱和黏土边坡失稳机理及其应用研究[D]. 兰州:兰州大学,2014. [LIU Zizhen. Instability mechanism and application analysis of partially saturated clay slope under sustained rainfall infiltration[D]. Lanzhou:Lanzhou University,2014. (in Chinese with English abstract)

    LIU Zizhen. Instability mechanism and application analysis of partially saturated clay slope under sustained rainfall infiltration[D]. Lanzhou: Lanzhou University, 2014. (in Chinese with English abstract)

    [2]

    吴小策. 降雨入渗对土石混合体边坡稳定性影响机理研究[D]. 长沙:中南大学,2010:1 − 6. [WU Xiaoce. Study on influence mechanism of rainfall infiltration on stability of soil-rock mixture slope[D]. Changsha:Central South University,2010:1 − 6. (in Chinese with English abstract)

    WU Xiaoce. Study on influence mechanism of rainfall infiltration on stability of soil-rock mixture slope[D]. Changsha: Central South University, 2010: 1 − 6. (in Chinese with English abstract)

    [3]

    GREEN W H,AMPT G A. studies on soil physics:Flow of air and water through soils[J]. Jagr Sci,1911,4(1):1 − 24.

    [4]

    XIAO Zhenghua,HAN Bo,TUOHUTI A,et al. Stability analysis of earth dam under unsaturated seepage[C]//Advanced Materials Research. Trans Tech Publications Ltd,2008,33:1129 − 1134.

    [5]

    LIU Zizhen,YAN Zhixin,QIU Zhanhong,et al. Stability analysis of an unsaturated soil slope considering rainfall infiltration based on the Green-Ampt model[J]. Journal of Mountain Science,2020,17(10):2577 − 2590. doi: 10.1007/s11629-019-5744-9

    [6]

    孙永帅,贾苍琴,王贵和. 降雨对边坡稳定性影响研究综述[J]. 施工技术,2012,41(17):63 − 66. [SUN Yongshuai,JIA Cangqin,WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology,2012,41(17):63 − 66. (in Chinese with English abstract)

    SUN Yongshuai, JIA Cangqin, WANG Guihe. Overview of research on stability of slope during rainfall[J]. Construction Technology, 2012, 4117): 6366. (in Chinese with English abstract)

    [7]

    HUANG Xiaolan,XIONG Jun,LIU Jianjun. Two‐phase seepage analysis in unsaturated rock and soil slope during rainfall[J]. AIP Conference Proceedings,2010,1207(1):507 − 512.

    [8]

    杨国强,陶虎,雷少伟,等. 不同雨型条件下非饱和土边坡渗流及稳定分析[J]. 水电能源科学,2022,40(6):166 − 170. [YANG Guoqiang,TAO Hu,LEI Shaowei,et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power,2022,40(6):166 − 170. (in Chinese with English abstract)

    YANG Guoqiang, TAO Hu, LEI Shaowei, et al. Analysis of seepage and stability of unsaturated soil slopes under different rainfall patterns[J]. Water Resources and Power, 2022, 406): 166170. (in Chinese with English abstract)

    [9]

    蒋中明,熊小虎,曾铃. 基于FLAC3D平台的边坡非饱和降雨入渗分析[J]. 岩土力学,2014,35(3):855 − 861. [JIANG Zhongming,XIONG Xiaohu,ZENG Ling. Unsaturated seepage analysis of slope under rainfall condition based on FLAC3D[J]. Rock and Soil Mechanics,2014,35(3):855 − 861. (in Chinese with English abstract)

    JIANG Zhongming, XIONG Xiaohu, ZENG Ling. Unsaturated seepage analysis of slope under rainfall condition based on FLAC3D[J]. Rock and Soil Mechanics, 2014, 353): 855861. (in Chinese with English abstract)

    [10]

    李晓科,王康,畅俊斌. 基于GNSS的滑坡监测预警技术应用——以宝塔区二庄科滑坡为例[J]. 科学技术创新,2022(12):173 − 176. [LI Xiaoke,WANG Kang,CHANG Junbin. Application of landslide monitoring and early warning technology based on GNSS:Taking erzhuangke landslide in Baota district as an example[J]. Scientific and Technological Innovation,2022(12):173 − 176. (in Chinese with English abstract)

    LI Xiaoke, WANG Kang, CHANG Junbin. Application of landslide monitoring and early warning technology based on GNSS: Taking erzhuangke landslide in Baota district as an example[J]. Scientific and Technological Innovation, 202212): 173176. (in Chinese with English abstract)

    [11]

    吴梦喜. 饱和-非饱和土中渗流Richards方程有限元算法[J]. 水利学报,2009,40(10):1274 − 1279. [WU Mengxi. Finite-element algorithm for Richards’ equation for saturated-unsaturated seepage flow[J]. Journal of Hydraulic Engineering,2009,40(10):1274 − 1279. (in Chinese with English abstract)

    WU Mengxi. Finite-element algorithm for Richards’ equation for saturated-unsaturated seepage flow[J]. Journal of Hydraulic Engineering, 2009, 4010): 12741279. (in Chinese with English abstract)

    [12]

    吕雨桦,梁德贤,王莹,等. 降雨条件下非饱和土边坡渗流-应力耦合分析[J]. 桂林理工大学学报,2021,41(2):318 − 324. [LYU Yuhua,LIANG Dexian,WANG Ying,et al. Seepage-stress coupling analysis of unsaturated soil slope under rainfall infiltration[J]. Journal of Guilin University of Technology,2021,41(2):318 − 324. (in Chinese with English abstract)

    LYU Yuhua, LIANG Dexian, WANG Ying, et al. Seepage-stress coupling analysis of unsaturated soil slope under rainfall infiltration[J]. Journal of Guilin University of Technology, 2021, 412): 318324. (in Chinese with English abstract)

    [13]

    石爱红,李国庆,丁德民,等. 考虑非饱和土基质吸力的丁家坡滑坡变形机制及稳定性评价[J]. 水文地质工程地质,2022,49(6):141 − 151. [SHI Aihong,LI Guoqing,DING Demin,et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology,2022,49(6):141 − 151. (in Chinese with English abstract)

    SHI Aihong, LI Guoqing, DING Demin, et al. Deformation mechanism and stability evaluation of Dingjiapo landslide considering the matric suction of unsaturated soil[J]. Hydrogeology & Engineering Geology, 2022, 496): 141151. (in Chinese with English abstract)

    [14]

    曾立峰,邵龙潭,牛庚,等. 考虑孔隙水微观赋存形态的非饱和粉土有效应力方程及其验证[J]. 水文地质工程地质,2022,49(4):37 − 46. [ZENG Lifeng,SHAO Longtan,NIU Geng,et al. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology,2022,49(4):37 − 46. (in Chinese with English abstract)

    ZENG Lifeng, SHAO Longtan, NIU Geng, et al. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology, 2022, 494): 3746. (in Chinese with English abstract)

    [15]

    刘朋飞,殷跃平,李滨,等. 非饱和黄土干湿循环土水特征曲线试验及渗透系数预测[J]. 中国地质灾害与防治学报,2015,26(4):125 − 129. [LIU Pengfei,YIN Yueping,LI Bin,et al. The tests of soil-water characteristical curve and permeability coefficient prediction of the wetting-drying cycles for unsaturated loess[J]. The Chinese Journal of Geological Hazard and Control,2015,26(4):125 − 129. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2015.04.22

    LIU Pengfei, YIN Yueping, LI Bin, et al. The tests of soil-water characteristical curve and permeability coefficient prediction of the wetting-drying cycles for unsaturated loess[J]. The Chinese Journal of Geological Hazard and Control, 2015, 264): 125129. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2015.04.22

    [16]

    许旭堂,鲜振兴,杨枫,等. 水-力耦合及干湿循环效应对浅层残积土斜坡稳定性的影响[J]. 中国地质灾害与防治学报,2022,33(4):28 − 36. [XU Xutang,XIAN Zhenxing,YANG Feng,et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):28 − 36. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202102018

    XU Xutang, XIAN Zhenxing, YANG Feng, et al. Influence of hydraulic-mechanical coupling and dry-wet cycle effect on surficial layer stability of residual soil slopes[J]. The Chinese Journal of Geological Hazard and Control, 2022, 334): 2836. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202102018

  • 加载中

(10)

(5)

计量
  • 文章访问数:  479
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2023-03-16
修回日期:  2023-07-14
录用日期:  2023-08-23
刊出日期:  2023-12-25

目录