Deformation prediction of the Northern Mountain landslide in Lijie Town of Zhouqu, Gansu Province based on long-short term memory network
-
摘要:
立节镇北山滑坡长期处于蠕动变形状态,已多次发生滑坡、泥石流灾害。监测地表形变,以掌握灾害体地表形变规律,是实现地质灾害预警预报的可靠依据。文章引入一种机器学习模型——长短期记忆网络,通过立节北山监测点位移数据,运用该方法对立节北山滑坡变形进行预测,并且将预测结果与实际数据进行比对和分析。文章预测结果评价指标选用均方根误差、平均绝对误差、决定系数以及可解释方差,其中决定系数和可解释方差均达到0.99,预测值和真实值的拟合均方根误差和平均绝对误差也表现较低,说明长短期记忆网络在立节北山滑坡变形的预测中达到了良好的预测性能。
Abstract:The North Mountain landslide in Lijie Town has been in a long-term creeping deformation state and has experienced multiple landslide and debris flow disasters. Monitoring the surface deformation of landslide to grasp the surface deformation pattern of disaster body is a reliable basis for realizing early warning prediction of geological disaster. In this paper, a machine learning model is introduced to predict the relevant data, and a long and short-term memory network is used to predict the landslide deformation by monitoring the displacement data of North Mountain in Lijie, and the prediction results are compared with the actual data and analyzed. In this paper, root mean square error , mean absolute error , coefficient of determination and explainable variance are used to evaluate the prediction results, among which the coefficient of determination and explainable variance reach 0.99. It shows that the long short-term memory network used in this paper achieves good prediction performance in the prediction of landslide deformation in the North Mountain of Lijie.
-
Key words:
- landslide /
- LSTM neural network /
- predictive analysis /
- North Mountain of Lijie /
- machine learning
-
表 1 GNSS1垂直位移精度评价指标
Table 1. Evaluation metrics for vertical displacement precision of GNSS1
评价指标 RMSE/mm MAE/mm R2 Evar 数值 12.88 6.56 0.99 0.99 表 2 GNSS8垂直位移精度评价指标
Table 2. Evaluation metrics for vertical displacement precision of GNSS8
评价指标 RMSE/mm MAE/mm R2 Evar 数值 6.63 5.66 0.99 0.99 表 3 GNSS8水平位移精度评价指标
Table 3. Evaluation metrics for horizontal displacement precision of GNSS8
评价指标 RMSE/mm MAE/mm R2 Evar 数值 4.00 3.79 0.99 0.99 -
[1] 张勤,黄观文,杨成生. 地质灾害监测预警中的精密空间对地观测技术[J]. 测绘学报,2017,46(10):1300 − 1307. [ZHANG Qin,HUANG Guanwen,YANG Chengsheng. Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1300 − 1307.(in Chinese with English abstract)
ZHANG Qin, HUANG Guanwen, YANG Chengsheng . Precision space observation technique for geological hazard monitoring and early warning[J]. Acta Geodaetica et Cartographica Sinica,2017 ,46 (10 ):1300 −1307 .(in Chinese with English abstract)[2] FROUDE M J,PETLEY D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences,2018,18(8):2161 − 2181. doi: 10.5194/nhess-18-2161-2018
[3] 宋昭富, 张勇, 佘涛, 等. 基于易发性分区的区域滑坡降雨预警阈值确定—以云南龙陵县为例[J]. 中国地质灾害与防治学报,2023,34(4):22 − 29. [SONG Zhaofu, ZHANG Yong, SHE Tao, et al. Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023,34(4):22 − 29. (in Chinese with English abstract)
SONG Zhaofu, ZHANG Yong, SHE Tao, et al . Determination of regional landslide rainfall warning threshold based on susceptibility zoning: A case study in Longling County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,2023 ,34 (4 ):22 −29 . (in Chinese with English abstract)[4] 唐亚明,张茂省,薛强,等. 滑坡监测预警国内外研究现状及评述[J]. 地质论评,2012,58(3):533 − 541. [TANG Yaming,ZHANG Maosheng,XUE Qiang,et al. Landslide monitoring and early-warning:An overview[J]. Geological Review,2012,58(3):533 − 541. (in Chinese with English abstract)
TANG Yaming, ZHANG Maosheng, XUE Qiang, et al . Landslide monitoring and early-warning: An overview[J]. Geological Review,2012 ,58 (3 ):533 −541 . (in Chinese with English abstract)[5] GLADE T,NADIM F. Early warning systems for natural hazards and risks[J]. Natural Hazards,2014,70(3):1669 − 1671. doi: 10.1007/s11069-013-1000-8
[6] 余凯,贾磊,陈雨强,等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展,2013,50(9):1799 − 1804. [YU Kai,JIA Lei,CHEN Yuqiang,et al. Deep learning:Yesterday,today,and tomorrow[J]. Journal of Computer Research and Development,2013,50(9):1799 − 1804. (in Chinese with English abstract)
YU Kai, JIA Lei, CHEN Yuqiang, et al . Deep learning: Yesterday, today, and tomorrow[J]. Journal of Computer Research and Development,2013 ,50 (9 ):1799 −1804 . (in Chinese with English abstract)[7] 杜续,冯景瑜,吕少卿,等. 基于随机森林回归分析的PM2.5浓度预测模型[J]. 电信科学,2017,33(7):66 − 75. [DU Xu,FENG Jingyu,LYU Shaoqing,et al. PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science,2017,33(7):66 − 75(in Chinese with English abstract)
DU Xu, FENG Jingyu, LYU Shaoqing, et al . PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecommunications Science,2017 ,33 (7 ):66 −75 (in Chinese with English abstract)[8] 张品一,薛京京. 多分形互联网金融市场的风险预警模型研究[J]. 数量经济技术经济研究,2022,39(8):162 − 180. [ZHANG Pinyi,XUE Jingjing. Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics,2022,39(8):162 − 180. (in Chinese with English abstract)
ZHANG Pinyi, XUE Jingjing . Research on risk early warning model of multi-fractal Internet financial market[J]. The Journal of Quantitative & Technical Economics,2022 ,39 (8 ):162 −180 . (in Chinese with English abstract)[9] 程宇也. 基于人工神经网络的短期电力负荷预测研究[D]. 杭州:浙江大学, 2017. [CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou:Zhejiang University, 2017. (in Chinese with English abstract)
CHENG Yuye. Research on short-term power load forecasting based on artificial neural network[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) [10] 李小妍. 基于图神经网络的交通流量预测[D]. 成都:电子科技大学, 2020. [LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
LI Xiaoyan. Traffic flow forecast based on graph neural network[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract) [11] 刘新,赵宁,郭金运,等. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报,2020,22(8):1617 − 1629. [LIU Xin,ZHAO Ning,GUO Jinyun,et al. Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science,2020,22(8):1617 − 1629. (in Chinese with English abstract)
LIU Xin, ZHAO Ning, GUO Jinyun, et al . Prediction of monthly precipitation over the Tibetan Plateau based on LSTM neural network[J]. Journal of Geo-Information Science,2020 ,22 (8 ):1617 −1629 . (in Chinese with English abstract)[12] 冯非凡,武雪玲,牛瑞卿,等. 一种V/S和LSTM结合的滑坡变形分析方法[J]. 武汉大学学报(信息科学版),2019,44(5):784 − 790. [FENG Feifan,WU Xueling,NIU Ruiqing,et al. A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019,44(5):784 − 790. (in Chinese with English abstract)
FENG Feifan, WU Xueling, NIU Ruiqing, et al . A landslide deformation analysis method using V/S and LSTM[J]. Geomatics and Information Science of Wuhan University,2019 ,44 (5 ):784 −790 . (in Chinese with English abstract)[13] 张宇,张鹏远,颜永红. 基于注意力LSTM和多任务学习的远场语音识别[J]. 清华大学学报(自然科学版),2018,58(3):249 − 253. [ZHANG Yu,ZHANG Pengyuan,YAN Yonghong. Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology),2018,58(3):249 − 253. (in Chinese with English abstract)
ZHANG Yu, ZHANG Pengyuan, YAN Yonghong . Long short-term memory with attention and multitask learning for distant speech recognition[J]. Journal of Tsinghua University (Science and Technology),2018 ,58 (3 ):249 −253 . (in Chinese with English abstract)[14] 刘宇. 深度学习在图像处理中的应用——基于深度学习的视频帧预测算法研究[D]. 成都:电子科技大学, 2020. [LIU Yu. Application of deep learning in image processing:Research on video frame prediction algorithm based on deep learning[D]. Chengdu:University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract)
LIU Yu. Application of deep learning in image processing: Research on video frame prediction algorithm based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese with English abstract) [15] 彭燕,刘宇红,张荣芬. 基于LSTM的股票价格预测建模与分析[J]. 计算机工程与应用,2019,55(11):209 − 212. [PENG Yan,LIU Yuhong,ZHANG Rongfen. Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications,2019,55(11):209 − 212. (in Chinese with English abstract)
PENG Yan, LIU Yuhong, ZHANG Rongfen . Modeling and analysis of stock price forecast based on LSTM[J]. Computer Engineering and Applications,2019 ,55 (11 ):209 −212 . (in Chinese with English abstract)[16] 杨青,王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究,2019,36(3):65 − 77. [YANG Qing,WANG Chenwei. A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019,36(3):65 − 77. (in Chinese with English abstract) doi: 10.19343/j.cnki.11-1302/c.2019.03.006
doi: 10.19343/j.cnki.11-1302/c.2019.03.006YANG Qing, WANG Chenwei . A study on forecast of global stock indices based on deep LSTM neural network[J]. Statistical Research,2019 ,36 (3 ):65 −77 . (in Chinese with English abstract)