Coupled dynamic response analysis of a flexible barrier under slope debris flow impact
-
摘要:
目前,被动柔性防护网相关性能检验仅针对落石冲击场景,在坡面泥石流冲击作用下,其耦合动力响应的研究匮乏。基于此现状,文章借用LS-DYNA软件展开深入研究。首先,对某标称能级为
5000 kJ的被动柔性防护网足尺落石冲击试验进行反演分析。通过对比关键绳索内力、耗能器伸长量及缓冲距离等关键指标,验证了所构建计算模型的准确性和可靠性。其次,构建了ALE-FEM耦合计算模型,研究了坡面泥石流冲击作用下被动柔性防护网力学响应特征,并与落石冲击工况进行了差异对比。最后,以泥石流流速和冲击能量作为变量,开展了参数化数值模拟。分析了冲击能量耗散转化特征,并从能量的角度,探究被动柔性防护网的极限防护能力。结果表明:被动柔性防护网能够成功拦截标称能级下的坡面泥石流,且相较于落石冲击工况,整体力学响应明显偏小;在冲击过程中,能量主要转化为泥石流内能;此外,被动柔性防护网具备成功拦截4倍标称能级坡面泥石流的能力。Abstract:Currently, performance testing of flexible barrier only focus on rockfall impacts, lacking research on the coupled dynamic response under slope debris flow impact. In this study, based on LS-DYNA, a full-scale impact test with a nominal energy level of
5000 kJ of flexible barrier was firstly back-analyzed, comparing and analyzing the key rope forces, elongation of energy dissipators, and buffer distance to verify the effectiveness of the computational model. Next, an ALE-FEM numerical calculation model was built to investigate the mechanical response characteristics of the flexible barrier under slope debris flow impact, and compared them with rockfall impact conditions. Finally, parametric numerical simulations of debris flow velocity and impact energy were carried out to analyze the dissipation and transformation characteristics of impact energy and explore the ultimate protective capacity of flexible barrier from an energy perspective. The results showed that the flexible barrier can successfully intercept slope debris flows under the nominal energy levels, with overall mechanical responses significantly smaller than those under rockfall impacts. The impact energy mainly converted into internal energy of debris flows. Flexible barriers can successfully intercept slope debris flows up to four times the impact energy of rockfalls.-
Key words:
- slope debris flow /
- flexible barrier /
- ALE-FEM /
- coupled dynamic response /
- preservation capacity
-
-
表 1 试验模型配置
Table 1. Configuration of the test model
部件 截面 破断力/kN 网片 R16/3/350 上/下支撑绳 2Ø22 610 辅助支撑绳 2Ø20 504 其余绳索 1Ø22 305 中柱 HEA220 边柱 RRW300/300/10 耗能器 U-300-R20 注:R16/3/350指16圈的环形网,钢丝直径3 mm,环网直径350 mm;2Ø22指2根直径22 mm的钢丝绳;HEA指H型钢截面;RRW指方管截面;
U-300-R20指U型耗能器,长度3 m、直径20 mm的钢棒。表 2 数值模型参数
Table 2. Numerical model parameters
构件 材料模型 密度/
(kg·m−3)弹性模量/
GPa泊松比 屈服强度/
MPa钢柱 随动塑性 7900 210 0.3 355 网片 分段线性弹塑性 7900 150 0.3 1200 钢丝绳 索 7900 120 耗能器 塑性弹簧 表 3 结果对比
Table 3. Comparison of results
结果数据 试验模型[22] 数值模型 误差/% 内力峰值/
kN上支撑绳 286 209 −26.92 下支撑绳 250 212 −15.20 辅助支撑绳 299 262 −12.37 上拉锚绳 242 187 −22.73 侧拉锚绳+
辅助支撑绳#1456 90+237=327 −28.29 耗能器伸长量
(左/右)/cm上支撑绳 141/95 175/187 24.11/96.84 下支撑绳 241/234 308/217 27.80/−7.26 辅助支撑绳#1 85/33 50/48 −41.18/45.45 辅助支撑绳#2 128/114 112/117 −12.50/2.63 辅助支撑绳#3 217/199 200/177 −7.83/−11.06 辅助支撑绳#4 194/174 223/210 14.95/20.69 表 4 泥石流模拟相关参数
Table 4. Parameters of debris flow simulation
变量 参数取值 体积/m3 48.9 流速/(m·s−1) 10 密度/(kg·m−3) 2200 剪切模量/kPa 500 体积模量/kPa 1000 黏聚力/kPa 2 库伦摩擦系数 0.4 表 5 结果对比
Table 5. Comparison of results
结果数据 落石冲击 泥石流冲击 λ 冲击变形/m 8.38 4.31 0.51 绳索内力峰值/kN 上支撑绳 209 221 1.06 下支撑绳 212 258 1.22 辅助支撑绳 262 263 1.00 上拉锚绳 187 158 0.84 侧拉锚绳 90 51 0.57 -
[1] 陈晓清,游勇,崔鹏,等. 汶川地震区特大泥石流工程防治新技术探索[J]. 四川大学学报(工程科学版),2013,45(1):14 − 22. [CHEN Xiaoqing,YOU Yong,CUI Peng,et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):14 − 22. (in Chinese with English abstract)]
CHEN Xiaoqing, YOU Yong, CUI Peng, et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1): 14 − 22. (in Chinese with English abstract)
[2] 程广志. 基于激光雷达与图像融合的铁路入侵目标检测系统设计[D]. 北京:北京交通大学,2023. [CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing:Beijing Jiaotong University,2023. (in Chinese with English abstract)]
CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing: Beijing Jiaotong University, 2023. (in Chinese with English abstract)
[3] ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. A case study on the energy capacity of a flexible rockfall barrier in resisting landslide debris[J]. Forests,2022,13:1384. doi: 10.3390/f13091384
[4] 赵世春,余志祥,韦韬,等. 被动柔性防护网受力机理试验研究与数值计算[J]. 土木工程学报,2013,46(5):122 − 128. [ZHAO Shichun,YU Zhixiang,WEI Tao,et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal,2013,46(5):122 − 128. (in Chinese with English abstract)]
ZHAO Shichun, YU Zhixiang, WEI Tao, et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5): 122 − 128. (in Chinese with English abstract)
[5] KOO R C H,KWAN J S H,LAM C,et al. Dynamic response of flexible rockfall barriers under different loading geometries[J]. Landslides,2017,14(3):905 − 916. doi: 10.1007/s10346-016-0772-9
[6] ZHAO Lei,YU Zhixiang,LIU Yaopeng,et al. Numerical simulation of responses of flexible rockfall barriers under impact loading at different positions[J]. Journal of Constructional Steel Research,2020,167:105953. doi: 10.1016/j.jcsr.2020.105953
[7] DENATALE J,IVERSON R M,MAJOR J,et al. Experimental testing of flexible barriers for containment of debris flow[R]. Department of the Interior & Geological Survey,1999.
[8] BUGNION L,MCARDELL B W,BARTELT P,et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides,2012,9(2):179 − 187. doi: 10.1007/s10346-011-0294-4
[9] LAM H W K,SZE E H Y,WONG E K L,et al. Study of dynamic debris impact load on flexible debris-resisting barriers and the dynamic pressure coefficient[J]. Canadian Geotechnical Journal,2022,59(12):2102 − 2118. doi: 10.1139/cgj-2021-0325
[10] 王秀丽,乔芬,冉永红,等. 新型泥石流柔性防护体系冲击动力响应分析[J]. 中国地质灾害与防治学报,2018,29(5):108 − 115. [WANG Xiuli,QIAO Fen,RAN Yonghong,et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):108 − 115. (in Chinese with English abstract)]
WANG Xiuli, QIAO Fen, RAN Yonghong, et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 108 − 115. (in Chinese with English abstract)
[11] 王东坡,赵军,张小梅,等. 开口柔性防护网调控泥石流性能试验研究[J]. 岩土力学,2022,43(5):1237 − 1248. [WANG Dongpo,ZHAO Jun,ZHANG Xiaomei,et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics,2022,43(5):1237 − 1248. (in Chinese with English abstract)]
WANG Dongpo, ZHAO Jun, ZHANG Xiaomei, et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics, 2022, 43(5): 1237 − 1248. (in Chinese with English abstract)
[12] SONG D,CHOI C E,NG C W W,et al. Geophysical flows impacting a flexible barrier:Effects of solid-fluid interaction[J]. Landslides,2018,15(1):99 − 110. doi: 10.1007/s10346-017-0856-1
[13] WENDELER C. Debris-flow protection systems for mountain torrents[M]. Swiss Federal Institute for Forest,Snow and Landscape Research WSL,2006.
[14] 赵雷,张丽君,余志祥,等. 泥石流柔性防护系统耦合作用数值模拟[J]. 防灾减灾工程学报,2022,42(3):606 − 613. [ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):606 − 613. (in Chinese with English abstract)]
ZHAO Lei, ZHANG Lijun, YU Zhixiang, et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 606 − 613. (in Chinese with English abstract)
[15] ZHAO Lei,HE Jianwen,YU Zhixiang,et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides,2020,17(12):2723 − 2736. doi: 10.1007/s10346-020-01463-x
[16] KONG Yong,LI Xingyue,ZHAO Jidong. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology,2021,289:106188. doi: 10.1016/j.enggeo.2021.106188
[17] 国家铁路局. 铁路边坡柔性被动防护产品落石冲击试验方法与评价:TB/T 3449—2016[S]. 北京:中国铁道出版社,2017. [National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product:TB/T 3449—2016[S]. Beijing:China Railway Publishing House,2017. (in Chinese)]
National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product: TB/T 3449—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)
[18] EOTA. Falling rock protection kits:EAD 340059-00-0106[S]. Brussels:European Organization for Technical Approvals,2018.
[19] EOTA. Guideline for european technical approval of falling rock protection kits:ETAG 027 [S].Brussels: European Organization for Technical Approvals,2008.
[20] QI Xin,PEI Xiangjun,HAN Rui,et al. Analysis of the effects of a rotating rock on rockfall protection barriers[J]. Geotechnical and Geological Engineering,2018,36:3255 − 3267. doi: 10.1007/s10706-018-0535-6
[21] 赵雷,邹定富,张丽君,等. 落石被动柔性防护网冲击力学响应的参数化研究[J]. 振动与冲击,2023,42(12):8 − 17. [ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock,2023,42(12):8 − 17. (in Chinese with English abstract)]
ZHAO Lei, ZOU Dingfu, ZHANG Lijun, et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock, 2023, 42(12): 8 − 17. (in Chinese with English abstract)
[22] EOTA. Evaluation report for the assessment of ETA- 11/0305 (Falling Rock Protection Barrier GBE-5000A)[R]. European Organization for Technical Approvals,2011.
[23] CHEUNG A K C,YIU J,LAM H W K,et al. Advanced numerical analysis of landslide debris mobility and barrier interaction[J]. HKIE Transactions,2018,25(2):76 − 89. doi: 10.1080/1023697X.2018.1462106
[24] 赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10):24 − 34. [ZHAO Shichun,YU Zhixiang,ZHAO Lei,et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics,2016,33(10):24 − 34. (in Chinese with English abstract)] doi: 10.6052/j.issn.1000-4750.2016.06.ST08
ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24 − 34. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2016.06.ST08
[25] 吴兵, 梁瑶, 赵晓彦, 等. 破碎岩质边坡锚墩式主动防护网设计方法[J]. 中国地质灾害与防治学报,2021,32(3):101 − 108. [WU Bing, LIANG Yao, ZHAO Xiaoyan, et al. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):101 − 108. (in Chinese with English abstract)]
WU Bing, LIANG Yao, ZHAO Xiaoyan, et al. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 101 − 108. (in Chinese with English abstract)
[26] 吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli,HU Xiewen,MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)]
WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 114 − 122. (in Chinese with English abstract)
-