中国地质环境监测院
中国地质灾害防治工程行业协会
主办

坡面泥石流冲击下被动柔性防护网的动力响应

赵雷, 邹定富, 张丽君, 余志祥. 坡面泥石流冲击下被动柔性防护网的动力响应[J]. 中国地质灾害与防治学报, 2025, 36(2): 118-125. doi: 10.16031/j.cnki.issn.1003-8035.202308031
引用本文: 赵雷, 邹定富, 张丽君, 余志祥. 坡面泥石流冲击下被动柔性防护网的动力响应[J]. 中国地质灾害与防治学报, 2025, 36(2): 118-125. doi: 10.16031/j.cnki.issn.1003-8035.202308031
ZHAO Lei, ZOU Dingfu, ZHANG Lijun, YU Zhixiang. Coupled dynamic response analysis of a flexible barrier under slope debris flow impact[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 118-125. doi: 10.16031/j.cnki.issn.1003-8035.202308031
Citation: ZHAO Lei, ZOU Dingfu, ZHANG Lijun, YU Zhixiang. Coupled dynamic response analysis of a flexible barrier under slope debris flow impact[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 118-125. doi: 10.16031/j.cnki.issn.1003-8035.202308031

坡面泥石流冲击下被动柔性防护网的动力响应

  • 基金项目: 四川省科技计划项目(2024NSFSC0910);西南交通大学新型交叉学科培育基金项目(2682023KJ004)
详细信息
    作者简介: 赵 雷(1990—),男,湖北荆州人,结构工程专业,博士,讲师,主要从事结构冲击与防护方面的研究。E-mail:zhaolei@swjtu.edu.cn
  • 中图分类号: P643.23;TU42;X43

Coupled dynamic response analysis of a flexible barrier under slope debris flow impact

  • 目前,被动柔性防护网相关性能检验仅针对落石冲击场景,在坡面泥石流冲击作用下,其耦合动力响应的研究匮乏。基于此现状,文章借用LS-DYNA软件展开深入研究。首先,对某标称能级为5000 kJ的被动柔性防护网足尺落石冲击试验进行反演分析。通过对比关键绳索内力、耗能器伸长量及缓冲距离等关键指标,验证了所构建计算模型的准确性和可靠性。其次,构建了ALE-FEM耦合计算模型,研究了坡面泥石流冲击作用下被动柔性防护网力学响应特征,并与落石冲击工况进行了差异对比。最后,以泥石流流速和冲击能量作为变量,开展了参数化数值模拟。分析了冲击能量耗散转化特征,并从能量的角度,探究被动柔性防护网的极限防护能力。结果表明:被动柔性防护网能够成功拦截标称能级下的坡面泥石流,且相较于落石冲击工况,整体力学响应明显偏小;在冲击过程中,能量主要转化为泥石流内能;此外,被动柔性防护网具备成功拦截4倍标称能级坡面泥石流的能力。

  • 加载中
  • 图 1  试验模型

    Figure 1. 

    图 2  变形对比

    Figure 2. 

    图 3  泥石流被动柔性防护网耦合数值模型

    Figure 3. 

    图 4  典型冲击时刻

    Figure 4. 

    图 5  支撑绳内力时程

    Figure 5. 

    图 6  耗能器伸长量对比

    Figure 6. 

    图 7  能量耗散分布

    Figure 7. 

    图 8  整体能量耗散率

    Figure 8. 

    图 9  耗能器能量耗散率

    Figure 9. 

    表 1  试验模型配置

    Table 1.  Configuration of the test model

    部件 截面 破断力/kN
    网片 R16/3/350
    上/下支撑绳 2Ø22 610
    辅助支撑绳 2Ø20 504
    其余绳索 1Ø22 305
    中柱 HEA220
    边柱 RRW300/300/10
    耗能器 U-300-R20
      注:R16/3/350指16圈的环形网,钢丝直径3 mm,环网直径350 mm;2Ø22指2根直径22 mm的钢丝绳;HEA指H型钢截面;RRW指方管截面;
    U-300-R20指U型耗能器,长度3 m、直径20 mm的钢棒。
    下载: 导出CSV

    表 2  数值模型参数

    Table 2.  Numerical model parameters

    构件 材料模型 密度/
    (kg·m−3
    弹性模量/
    GPa
    泊松比 屈服强度/
    MPa
    钢柱 随动塑性 7900 210 0.3 355
    网片 分段线性弹塑性 7900 150 0.3 1200
    钢丝绳 7900 120
    耗能器 塑性弹簧
    下载: 导出CSV

    表 3  结果对比

    Table 3.  Comparison of results

    结果数据 试验模型[22] 数值模型 误差/%
    内力峰值/
    kN
    上支撑绳 286 209 −26.92
    下支撑绳 250 212 −15.20
    辅助支撑绳 299 262 −12.37
    上拉锚绳 242 187 −22.73
    侧拉锚绳+
    辅助支撑绳#1
    456 90+237=327 −28.29
    耗能器伸长量
    (左/右)/cm
    上支撑绳 141/95 175/187 24.11/96.84
    下支撑绳 241/234 308/217 27.80/−7.26
    辅助支撑绳#1 85/33 50/48 −41.18/45.45
    辅助支撑绳#2 128/114 112/117 −12.50/2.63
    辅助支撑绳#3 217/199 200/177 −7.83/−11.06
    辅助支撑绳#4 194/174 223/210 14.95/20.69
    下载: 导出CSV

    表 4  泥石流模拟相关参数

    Table 4.  Parameters of debris flow simulation

    变量 参数取值
    体积/m3 48.9
    流速/(m·s−1 10
    密度/(kg·m−3 2200
    剪切模量/kPa 500
    体积模量/kPa 1000
    黏聚力/kPa 2
    库伦摩擦系数 0.4
    下载: 导出CSV

    表 5  结果对比

    Table 5.  Comparison of results

    结果数据 落石冲击 泥石流冲击 λ
    冲击变形/m 8.38 4.31 0.51
    绳索内力峰值/kN 上支撑绳 209 221 1.06
    下支撑绳 212 258 1.22
    辅助支撑绳 262 263 1.00
    上拉锚绳 187 158 0.84
    侧拉锚绳 90 51 0.57
    下载: 导出CSV
  • [1]

    陈晓清,游勇,崔鹏,等. 汶川地震区特大泥石流工程防治新技术探索[J]. 四川大学学报(工程科学版),2013,45(1):14 − 22. [CHEN Xiaoqing,YOU Yong,CUI Peng,et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition),2013,45(1):14 − 22. (in Chinese with English abstract)]

    CHEN Xiaoqing, YOU Yong, CUI Peng, et al. New control methods for large debris flows in Wenchuan earthquake area[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(1): 14 − 22. (in Chinese with English abstract)

    [2]

    程广志. 基于激光雷达与图像融合的铁路入侵目标检测系统设计[D]. 北京:北京交通大学,2023. [CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing:Beijing Jiaotong University,2023. (in Chinese with English abstract)]

    CHENG Guangzhi. Design of railway intrusion target detection system based on LiDAR and image fusion[D]. Beijing: Beijing Jiaotong University, 2023. (in Chinese with English abstract)

    [3]

    ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. A case study on the energy capacity of a flexible rockfall barrier in resisting landslide debris[J]. Forests,2022,13:1384. doi: 10.3390/f13091384

    [4]

    赵世春,余志祥,韦韬,等. 被动柔性防护网受力机理试验研究与数值计算[J]. 土木工程学报,2013,46(5):122 − 128. [ZHAO Shichun,YU Zhixiang,WEI Tao,et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal,2013,46(5):122 − 128. (in Chinese with English abstract)]

    ZHAO Shichun, YU Zhixiang, WEI Tao, et al. Test study of force mechanism and numerical calculation of safety netting system[J]. China Civil Engineering Journal, 2013, 46(5): 122 − 128. (in Chinese with English abstract)

    [5]

    KOO R C H,KWAN J S H,LAM C,et al. Dynamic response of flexible rockfall barriers under different loading geometries[J]. Landslides,2017,14(3):905 − 916. doi: 10.1007/s10346-016-0772-9

    [6]

    ZHAO Lei,YU Zhixiang,LIU Yaopeng,et al. Numerical simulation of responses of flexible rockfall barriers under impact loading at different positions[J]. Journal of Constructional Steel Research,2020,167:105953. doi: 10.1016/j.jcsr.2020.105953

    [7]

    DENATALE J,IVERSON R M,MAJOR J,et al. Experimental testing of flexible barriers for containment of debris flow[R]. Department of the Interior & Geological Survey,1999.

    [8]

    BUGNION L,MCARDELL B W,BARTELT P,et al. Measurements of hillslope debris flow impact pressure on obstacles[J]. Landslides,2012,9(2):179 − 187. doi: 10.1007/s10346-011-0294-4

    [9]

    LAM H W K,SZE E H Y,WONG E K L,et al. Study of dynamic debris impact load on flexible debris-resisting barriers and the dynamic pressure coefficient[J]. Canadian Geotechnical Journal,2022,59(12):2102 − 2118. doi: 10.1139/cgj-2021-0325

    [10]

    王秀丽,乔芬,冉永红,等. 新型泥石流柔性防护体系冲击动力响应分析[J]. 中国地质灾害与防治学报,2018,29(5):108 − 115. [WANG Xiuli,QIAO Fen,RAN Yonghong,et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control,2018,29(5):108 − 115. (in Chinese with English abstract)]

    WANG Xiuli, QIAO Fen, RAN Yonghong, et al. Dynamic response analysis for a new type of debris flow flexible protection system[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(5): 108 − 115. (in Chinese with English abstract)

    [11]

    王东坡,赵军,张小梅,等. 开口柔性防护网调控泥石流性能试验研究[J]. 岩土力学,2022,43(5):1237 − 1248. [WANG Dongpo,ZHAO Jun,ZHANG Xiaomei,et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics,2022,43(5):1237 − 1248. (in Chinese with English abstract)]

    WANG Dongpo, ZHAO Jun, ZHANG Xiaomei, et al. Experimental study of regulation performance of open flexible debris flow barriers[J]. Rock and Soil Mechanics, 2022, 43(5): 1237 − 1248. (in Chinese with English abstract)

    [12]

    SONG D,CHOI C E,NG C W W,et al. Geophysical flows impacting a flexible barrier:Effects of solid-fluid interaction[J]. Landslides,2018,15(1):99 − 110. doi: 10.1007/s10346-017-0856-1

    [13]

    WENDELER C. Debris-flow protection systems for mountain torrents[M]. Swiss Federal Institute for Forest,Snow and Landscape Research WSL,2006.

    [14]

    赵雷,张丽君,余志祥,等. 泥石流柔性防护系统耦合作用数值模拟[J]. 防灾减灾工程学报,2022,42(3):606 − 613. [ZHAO Lei,ZHANG Lijun,YU Zhixiang,et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(3):606 − 613. (in Chinese with English abstract)]

    ZHAO Lei, ZHANG Lijun, YU Zhixiang, et al. Coupled numerical simulation of flexible debris flow barrier[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 606 − 613. (in Chinese with English abstract)

    [15]

    ZHAO Lei,HE Jianwen,YU Zhixiang,et al. Coupled numerical simulation of a flexible barrier impacted by debris flow with boulders in front[J]. Landslides,2020,17(12):2723 − 2736. doi: 10.1007/s10346-020-01463-x

    [16]

    KONG Yong,LI Xingyue,ZHAO Jidong. Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier[J]. Engineering Geology,2021,289:106188. doi: 10.1016/j.enggeo.2021.106188

    [17]

    国家铁路局. 铁路边坡柔性被动防护产品落石冲击试验方法与评价:TB/T 3449—2016[S]. 北京:中国铁道出版社,2017. [National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product:TB/T 3449—2016[S]. Beijing:China Railway Publishing House,2017. (in Chinese)]

    National Railway Administration of the People's Republic of China. Rockfall impact test method and evaluation of railway slope flexible passive protection product: TB/T 3449—2016[S]. Beijing: China Railway Publishing House, 2017. (in Chinese)

    [18]

    EOTA. Falling rock protection kits:EAD 340059-00-0106[S]. Brussels:European Organization for Technical Approvals,2018.

    [19]

    EOTA. Guideline for european technical approval of falling rock protection kits:ETAG 027 [S].Brussels: European Organization for Technical Approvals,2008.

    [20]

    QI Xin,PEI Xiangjun,HAN Rui,et al. Analysis of the effects of a rotating rock on rockfall protection barriers[J]. Geotechnical and Geological Engineering,2018,36:3255 − 3267. doi: 10.1007/s10706-018-0535-6

    [21]

    赵雷,邹定富,张丽君,等. 落石被动柔性防护网冲击力学响应的参数化研究[J]. 振动与冲击,2023,42(12):8 − 17. [ZHAO Lei,ZOU Dingfu,ZHANG Lijun,et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock,2023,42(12):8 − 17. (in Chinese with English abstract)]

    ZHAO Lei, ZOU Dingfu, ZHANG Lijun, et al. Parametric study on the mechanical response of a flexible rockfall barrier[J]. Journal of Vibration and Shock, 2023, 42(12): 8 − 17. (in Chinese with English abstract)

    [22]

    EOTA. Evaluation report for the assessment of ETA- 11/0305 (Falling Rock Protection Barrier GBE-5000A)[R]. European Organization for Technical Approvals,2011.

    [23]

    CHEUNG A K C,YIU J,LAM H W K,et al. Advanced numerical analysis of landslide debris mobility and barrier interaction[J]. HKIE Transactions,2018,25(2):76 − 89. doi: 10.1080/1023697X.2018.1462106

    [24]

    赵世春,余志祥,赵雷,等. 被动防护网系统强冲击作用下的传力破坏机制[J]. 工程力学,2016,33(10):24 − 34. [ZHAO Shichun,YU Zhixiang,ZHAO Lei,et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics,2016,33(10):24 − 34. (in Chinese with English abstract)] doi: 10.6052/j.issn.1000-4750.2016.06.ST08

    ZHAO Shichun, YU Zhixiang, ZHAO Lei, et al. Damage mechanism of rockfall barriers under strong impact loading[J]. Engineering Mechanics, 2016, 33(10): 24 − 34. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2016.06.ST08

    [25]

    吴兵, 梁瑶, 赵晓彦, 等. 破碎岩质边坡锚墩式主动防护网设计方法[J]. 中国地质灾害与防治学报,2021,32(3):101 − 108. [WU Bing, LIANG Yao, ZHAO Xiaoyan, et al. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control,2021,32(3):101 − 108. (in Chinese with English abstract)]

    WU Bing, LIANG Yao, ZHAO Xiaoyan, et al. Design method of anchor pier type active protective net on fractured rock slopes[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3): 101 − 108. (in Chinese with English abstract)

    [26]

    吴建利, 胡卸文, 梅雪峰, 等. 高位落石作用下不同缓冲层与钢筋混凝土板组合结构动力响应[J]. 水文地质工程地质,2020,47(4):114 − 122. [WU Jianli,HU Xiewen,MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology,2020,47(4):114 − 122. (in Chinese with English abstract)]

    WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC plate with different cushion layers under the high-level rockfall impact[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 114 − 122. (in Chinese with English abstract)

  • 加载中

(9)

(5)

计量
  • 文章访问数:  27
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2023-08-19
修回日期:  2023-10-08
录用日期:  2024-05-29
刊出日期:  2025-04-25

目录