-
摘要:
我国东南沿海地区台风暴雨型滑坡多发于植被覆盖边坡,坡面乔木植被发育、整体覆盖度高,探究台风作用下植被对边坡稳定性的影响机制对开展边坡稳定性分析和风险评价具有重要意义。文章选取典型台风触发浅层滑坡灾害点开挖剖面,统计分析植被根系发育规律,结合室内土工试验和现场染色示踪试验,明确了根系对土体物理力学性质和渗透特性的影响。研究表明:边坡覆盖的马尾松乔木植被以大直径粗根系为主,主根系发育深度可达2 m,根系在提供附加黏聚力加固边坡的同时,利用根-土间隙提供优势渗流通道,加速雨水入渗,林下边坡优势渗流所占比重可达坡面均匀入渗的2~3倍。植被根系力学加筋机制和根-土间隙优势渗流效应促使根系最大发育深度处存在力学和渗透特性差异,进而演化为潜在滑面。台风期间,在强风荷载、降雨优势入渗和植被联合作用下,易沿根系最大发育深度和边坡内部土-岩基覆界面诱发滑坡灾害。研究成果可为东南沿海地区台风暴雨型滑坡灾害风险评价提供依据。
Abstract:Typhoon-induced landslides in southeast coastal China are clustered in trees-covered slopes, suggesting potential interactions between trees and slope stability. Investigate the impacts of trees is crucial for slope stability analysis during typhoons. With this purpose, we conduct field tests, laboratory tests and dye tracer tests to investigate the root distribution and impacts of roots on soil properties. Results indicate that trees covered on slopes have a taproot system with a maximum rooting depth of 2 m. Tree roots enhance slope stability by providing additional cohesion to the soil but simultaneously create preferential flow paths that facilitate rapid rainwater infiltration. The contribution of preferential flow arising from root-soil gaps reaches 2 to 3 times greater than uniform shallow infiltration. These dual effects of root reinforcement and preferential infiltration significantly alter the mechanical and hydrological properties of the soil at the maximum rooting depth. During a typhoon event, the strong wind load, rainfall infiltration and trees jointly trigger landslides. The maximum rooting depth and bed-soil interface are two potential sliding surfaces within the slope. Our works provide new insights into the risk assessment of typhoon-induced landslides.
-
-
[1] 张庆云,陶诗言,彭京备. 我国灾害性天气气候事件成因机理的研究进展[J]. 大气科学,2008,32(4):815 − 825. [ZHANG Qingyun,TAO Shiyan,PENG Jingbei. The studies of meteorological disasters over China[J]. Chinese Journal of Atmospheric Sciences,2008,32(4):815 − 825. (in Chinese with English abstract)] doi: 10.3878/j.issn.1006-9895.2008.04.10
ZHANG Qingyun, TAO Shiyan, PENG Jingbei. The studies of meteorological disasters over China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 815 − 825. (in Chinese with English abstract) doi: 10.3878/j.issn.1006-9895.2008.04.10
[2] YASUHARA K,MURAKAMI S,MIMURA N. Geo-disasters in the context of climate change[J]. Japanese Geotechnical Society Special Publication,2015,3(2):45 − 50. doi: 10.3208/jgssp.v03.j04
[3] BAKKENSEN L A,MENDELSOHN R. Global tropical cyclone damages and fatalities under climate change:An updated assessment[J]. Hurricane Risk,2019,179 – 197.
[4] 施素芬,赵利刚. 强台风“云娜” 灾害特征及其评估[J]. 气象科技,2006,34(3):315 − 318. [SHI Sufen,ZHAO Ligang. Characteristics of severe typhoon rananim and its assessment[J]. Meteorological Science and Technology,2006,34(3):315 − 318. (in Chinese with English abstract)] doi: 10.3969/j.issn.1671-6345.2006.03.016
SHI Sufen, ZHAO Ligang. Characteristics of severe typhoon rananim and its assessment[J]. Meteorological Science and Technology, 2006, 34(3): 315 − 318. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-6345.2006.03.016
[5] 郭云谦,王毅,沈越婷,等. 台风“利奇马” 不同区域降水极端性特征及成因分析[J]. 气象科学,2020,40(1):65 − 77. [GUO Yunqian;WANY Yi,SHEN Yueting,et al. Analysis on characteristics of the extreme precipitation of typhoon “Lekima”[J]. Journal of the Meteorological Sciences,2020,40(1):65 − 77. (in Chinese with English abstract)] doi: 10.3969/2019jms.0081
GUO Yunqian;WANY Yi, SHEN Yueting, et al. Analysis on characteristics of the extreme precipitation of typhoon “Lekima”[J]. Journal of the Meteorological Sciences, 2020, 40(1): 65 − 77. (in Chinese with English abstract) doi: 10.3969/2019jms.0081
[6] ZHUANG Yu,XING Aiguo,SUN Qiang,et al. Failure and disaster-causing mechanism of a typhoon-induced large landslide in Yongjia,Zhejiang,China[J]. Landslides,2023,20(10):2257 − 2269. doi: 10.1007/s10346-023-02099-3
[7] CHAU K T,SZE Y L,FUNG M K,et al. Landslide hazard analysis for Hong Kong using landslide inventory and GIS[J]. Computers & Geosciences,2004,30(4):429 − 443.
[8] TSOU C Y,FENG Zhengyi,CHIGIRA M. Catastrophic landslide induced by typhoon Morakot,Shiaolin,Taiwan[J]. Geomorphology,2011,127(3/4):166 − 178.
[9] SAITO H,KORUP O,UCHIDA T,et al. Rainfall conditions,typhoon frequency,and contemporary landslide erosion in Japan[J]. Geology,2014,42(11):999 − 1002.
[10] SAMODRA G,NGADISIH N,MALAWANI M N,et al. Frequency–magnitude of landslides affected by the 27–29 November 2017 Tropical Cyclone Cempaka in Pacitan,East Java[J]. Journal of Mountain Science,2020,17(4):773 − 786.
[11] NG C W W,YANG B,LIU Z Q,et al. Spatiotemporal modelling of rainfall-induced landslides using machine learning[J]. Landslides,2021,18(7):2499 − 2514. doi: 10.1007/s10346-021-01662-0
[12] 王照财. 风荷载作用下植被对边坡稳定性影响研究[D]. 成都:成都理工大学,2014. [WANG Zhaocai. Study on the influence of vegetation on slope stability under wind load[D]. Chengdu:Chengdu University of Technology,2014. (in Chinese with English abstract)]
WANG Zhaocai. Study on the influence of vegetation on slope stability under wind load[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
[13] 张泰丽. 浙江省东部台风暴雨诱发滑坡变形特征和成因机制研究[D]. 武汉:中国地质大学,2016. [ZHANG Taili. Study on deformation characteristics and genetic mechanism of landslide induced by typhoon and rainstorm in eastern Zhejiang Province[D]. Wuhan:China University of Geosciences,2016. (in Chinese with English abstract)]
ZHANG Taili. Study on deformation characteristics and genetic mechanism of landslide induced by typhoon and rainstorm in eastern Zhejiang Province[D]. Wuhan: China University of Geosciences, 2016. (in Chinese with English abstract)
[14] 闫金凯,黄俊宝,李海龙,等. 台风暴雨型浅层滑坡失稳机理研究[J]. 地质力学学报,2020,26(4):481 − 491. [YAN Jinkai,HUANG Junbao,LI Hailong,et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics,2020,26(4):481 − 491. (in Chinese with English abstract)] doi: 10.12090/j.issn.1006-6616.2020.26.04.041
YAN Jinkai, HUANG Junbao, LI Hailong, et al. Study on instability mechanism of shallow landslide caused by typhoon and heavy rain[J]. Journal of Geomechanics, 2020, 26(4): 481 − 491. (in Chinese with English abstract) doi: 10.12090/j.issn.1006-6616.2020.26.04.041
[15] ZHUANG Yu,XING Aiguo,JIANG Yuehua,et al. Typhoon,rainfall and trees jointly cause landslides in coastal regions[J]. Engineering Geology,2022,298:106561.
[16] BUMA B,JOHNSON A C. The role of windstorm exposure and yellow cedar decline on landslide susceptibility in southeast Alaskan temperate rainforests[J]. Geomorphology,2015,228:504 − 511.
[17] EMADI TAFTI M,ATAIE ASHTIANI B. A modeling platform for landslide stability:A hydrological approach[J]. Water,2019,11(10):2146.
[18] 孔维伟,赵其华,韩俊,等. 台风滑坡变形破坏机制模型试验研究[J]. 工程地质学报,2013,21(2):297 − 303. [KONG Weiwei,ZHAO Qihua,HAN Jun,et al. Model experiments for deformation and failure mechanism of typhoon induced landslide[J]. Journal of Engineering Geology,2013,21(2):297 − 303. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2013.02.016
KONG Weiwei, ZHAO Qihua, HAN Jun, et al. Model experiments for deformation and failure mechanism of typhoon induced landslide[J]. Journal of Engineering Geology, 2013, 21(2): 297 − 303. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.02.016
[19] FORRER I,PAPRITZ A,KASTEEL R,et al. Quantifying dye tracers in soil profiles by image processing[J]. European Journal of Soil Science,2000,51(2):313 − 322.
[20] SCHWÄRZEL K,EBERMANN S,SCHALLING N. Evidence of double-funneling effect of beech trees by visualization of flow pathways using dye tracer[J]. Journal of Hydrology,2012,470:184 − 192.
[21] 张家明,徐则民,李峰. 植被发育斜坡土体大孔隙分布特征的染色示踪法研究[J]. 山地学报,2015,33(1):1 − 7. [ZHANG Jiaming,XU Zemin,LI Feng. Heterogeneous characteristics of macropores in soil of well vegetated slopes by dye tracing method[J]. Mountain Research,2015,33(1):1 − 7. (in Chinese with English abstract)]
ZHANG Jiaming, XU Zemin, LI Feng. Heterogeneous characteristics of macropores in soil of well vegetated slopes by dye tracing method[J]. Mountain Research, 2015, 33(1): 1 − 7. (in Chinese with English abstract)
[22] YANG Ming,DÉFOSSEZ P,DUPONT S. A root-to-foliage tree dynamic model for gusty winds during windstorm conditions[J]. Agricultural and Forest Meteorology,2020,287:107949. doi: 10.1016/j.agrformet.2020.107949
[23] MAIR A,DUPUY L X,PTASHNYK M. Model for water infiltration in vegetated soil with preferential flow oriented by plant roots[J]. Plant and Soil,2022,478(1):709 − 729.
[24] ZHUANG Yu,XING Aiguo,PETLEY D,et al. Elucidating the impacts of trees on landslide initiation throughout a typhoon:Preferential infiltration,wind load and root reinforcement[J]. Earth Surface Processes and Landforms,2023,48(15):3128 − 3141. doi: 10.1002/esp.5686
[25] 豆红强,简文彬,王浩,等. 高植被覆盖区台风暴雨型滑坡成灾机制及预警模型研究综述[J]. 自然灾害学报,2023,32(2):1 − 15. [DOU Hongqiang,JIAN Wenbin,WANG Hao,et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters,2023,32(2):1 − 15. (in Chinese with English abstract)]
DOU Hongqiang, JIAN Wenbin, WANG Hao, et al. Review of failure mechanism and early warning model of landslides induced by typhoon and associated rainstorm in high vegetation coverage area[J]. Journal of Natural Disasters, 2023, 32(2): 1 − 15. (in Chinese with English abstract)
[26] LEUNG A K,GARG A,COO J L,et al. Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity[J]. Hydrological Processes,2015,29(15):3342 − 3354. doi: 10.1002/hyp.10452
[27] JOTISANKASA A,SIRIRATTANACHAT T. Effects of grass roots on soil-water retention curve and permeability function[J]. Canadian Geotechnical Journal,2017,54(11):1612 − 1622. doi: 10.1139/cgj-2016-0281
[28] CAMIRÉ C,CÔTÉ B,BRULOTTE S. Decomposition of roots of black alder and hybrid poplar in short-rotation plantings:Nitrogen and lignin control[J]. Plant and Soil,1991,138(1):123 − 132. doi: 10.1007/BF00011814
[29] 宋尊荣,秦佳双,李明金,等. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版),2020,38(1):149 − 156. [SONG Zunrong,QIN Jiashuang,LI Mingjin,et al. Study on root biomass of pinus massoniana plantations in subtropical China[J]. Journal of Guangxi Normal University (Natural Science Edition),2020,38(1):149 − 156. (in Chinese with English abstract)]
SONG Zunrong, QIN Jiashuang, LI Mingjin, et al. Study on root biomass of pinus massoniana plantations in subtropical China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(1): 149 − 156. (in Chinese with English abstract)
[30] WU T H,MCKINNELL W P,SWANSTON D N. Strength of tree roots and landslides on prince of Wales Island,Alaska[J]. Canadian Geotechnical Journal,1979,16(1):19 − 33. doi: 10.1139/t79-003
[31] MATSUSHI Y,MATSUKURA Y. Cohesion of unsaturated residual soils as a function of volumetric water content[J]. Bulletin of Engineering Geology and the Environment,2006,65(4):449 − 455. doi: 10.1007/s10064-005-0035-9
[32] GHESTEM M,SIDLE R C,STOKES A. The influence of plant root systems on subsurface flow:Implications for slope stability[J]. BioScience,2011,61(11):869 − 879. doi: 10.1525/bio.2011.61.11.6
[33] TOBELLA A B,REESE H,ALMAW A,et al. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso[J]. Water Resources Research,2014,50(4):3342 − 3354. doi: 10.1002/2013WR015197
[34] LUO Ziteng,NIU Jianzhi,ZHANG Linus,et al. Roots-enhanced preferential flows in deciduous and coniferous forest soils revealed by dual-tracer experiments[J]. Journal of Environmental Quality,2019,48(1):136 − 146. doi: 10.2134/jeq2018.03.0091
-