中国地质环境监测院
中国地质灾害防治工程行业协会
主办

极端降雨条件下土工合成材料加筋土桥台稳定性分析

黄强强, 任非凡. 极端降雨条件下土工合成材料加筋土桥台稳定性分析[J]. 中国地质灾害与防治学报, 2025, 36(2): 78-86. doi: 10.16031/j.cnki.issn.1003-8035.202412025
引用本文: 黄强强, 任非凡. 极端降雨条件下土工合成材料加筋土桥台稳定性分析[J]. 中国地质灾害与防治学报, 2025, 36(2): 78-86. doi: 10.16031/j.cnki.issn.1003-8035.202412025
HUANG Qiangqiang, REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 78-86. doi: 10.16031/j.cnki.issn.1003-8035.202412025
Citation: HUANG Qiangqiang, REN Feifan. Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 78-86. doi: 10.16031/j.cnki.issn.1003-8035.202412025

极端降雨条件下土工合成材料加筋土桥台稳定性分析

  • 基金项目: 上海浦江人才计划项目(23PJD101);国家自然科学基金项目(41877224);中央高校基本科研业务费项目
详细信息
    作者简介: 黄强强(1993—),男,安徽芜湖人,地质资源与地质工程专业,博士研究生,主要研究方向为加筋土结构。 E-mail:huangqq@tongji.edu.cn
    通讯作者: 任非凡(1980—),男,山西运城人,地质工程专业,博士,副教授,主要研究方向为地质灾害防治、加筋土结构等。E-mail:feifan_ren@tongji.edu.cn
  • 中图分类号: P694

Stability analysis of geosynthetic-reinforced soil bridge abutments under extreme rainfall conditions

More Information
  • 土工合成材料加筋土桥台因其造价低廉、施工便捷和绿色低碳的特点,在道路交通工程中具有广泛的应用潜力。然而,近年来极端降雨事件频发,对桥台的变形与稳定性造成了显著影响。采用模型试验与数值模拟相结合的方法,系统分析了极端降雨条件下桥台在交通荷载作用下的力学行为。研究表明,基于DBLEAVES-X建立的数值计算模型能够准确模拟降雨入渗条件下桥台的力学响应,验证了其在非饱和土力学分析中的可靠性。参数分析结果显示,降雨强度和填料渗透系数对桥台的稳定性具有显著影响。采用渗透系数为1.0×10−2 cm/s的高渗透性填料可以显著增强桥台的抗降雨稳定性,即使在200 mm/h的极端降雨条件下,桥台的稳定性仍接近未降雨工况。当填料渗透系数为1.0×10−3 cm/s或1.0×10−4 cm/s时,降雨可能导致孔隙水压力迅速积累,引发土体膨胀变形,显著加剧桥台的变形和失稳风险。因此,在实际工程设计中,应优先选用渗透性能良好的填料,优化排水系统设计,并采取针对性防护措施,以提高桥台在复杂环境条件下的长期稳定性和安全性。

  • 加载中
  • 图 1  GRS桥台模型及传感器分布图

    Figure 1. 

    图 2  填料级配曲线

    Figure 2. 

    图 3  GRS桥台有限元网格

    Figure 3. 

    图 4  模型试验与数值模拟水平位移结果对比

    Figure 4. 

    图 5  桥台顶部面板

    Figure 5. 

    图 6  模型试验与数值模拟顶部沉降结果对比

    Figure 6. 

    图 7  模型试验与数值模拟土压力分布结果对比

    Figure 7. 

    图 8  不同降雨条件下GRS桥台的水平位移和竖向沉降

    Figure 8. 

    图 9  不同渗透系数桥台在20 mm/h降雨条件下的孔隙水压力变化

    Figure 9. 

    图 10  低渗透性GRS桥台在极端降雨条件下孔隙水压力随时间的变化

    Figure 10. 

    图 11  GRS桥台在极端降雨条件下的变形

    Figure 11. 

    表 1  填料物理力学试验参数

    Table 1.  Physical mechanical test parameters of backfill

    最大干密度
    /(g·cm−3
    最小干密度
    /(g·cm−3
    比重 黏聚力
    /kPa
    内摩擦角
    /(°)
    渗透系数
    /(cm·s−1
    1.768 1.373 2.64 0 45 1.0×10−2
    下载: 导出CSV

    表 2  数值计算中各材料力学参数

    Table 2.  Mechanical parameters of materials used in numerical analysis

    材料 参数 取值
    填料 压缩指数 0.01
    回弹指数 0.001
    泊松比 0.3
    临界应力比 5.2
    正常固结线上的参考孔隙比 0.628
    超固结性参数 0.1
    结构性参数 1.5
    各向异性参数 1
    面板 弹性模量 /(kN·m−1 2.0×102
    泊松比 0.3
    边坡 弹性模量 /(kN·m−1 1.6×105
    泊松比 0.3
    加载板 弹性模量/(kN·m−1 9.9×109
    泊松比 0.3
    筋材 弹性模量/(kN·m−1 500
    下载: 导出CSV

    表 3  不同渗透系数与降雨强度组合的数值模拟工况设置

    Table 3.  Numerical simulation settings for different combinations of permeability coefficients and rainfall intensities

    工况 渗透系数
    /(cm·s−1
    降雨强度 /(mm·h-1 降雨时间
    /h
    降雨总量
    /mm
    工况1 1.0×10−2 0
    工况2 2 100 200
    工况3 20 10 200
    工况4 200 1 200
    工况5 1.0×10−3 2 100 200
    工况6 20 10 200
    工况7 200 1 200
    工况8 1.0×10−4 2 100 200
    工况9 20 10 200
    工况10 200 1 200
    下载: 导出CSV
  • [1]

    ABU-HEJLEH N,ZORNBERG J G,WANG T,et al. Monitored displacements of unique geosynthetic-reinforced soil bridge abutments[J]. Geosynthetics International,2002,9(1):71 − 95. doi: 10.1680/gein.9.0211

    [2]

    ADAMS M T,SCHLATTER W,STABILE T. Geosynthetic reinforced soil integrated abutments at the bowman road bridge in defiance county,Ohio[C]//Geosynthetics in Reinforcement and Hydraulic Applications. Denver,Colorado,USA. American Society of Civil Engineers,2007:1-10.

    [3]

    ADAMS M,NICKS J,STABILE T,et al. Geosynthetic reinforced soil integrated bridge system[C]// EuroGeo4 Paper 2011(271).

    [4]

    任非凡,何江洋. 加筋土结构动力特性研究现状综述[J]. 中国地质灾害与防治学报,2016,27(4):120 − 129. [REN Feifan,HE Jiangyang. Research status review on dynamic properties of reinforced earth structure[J]. The Chinese Journal of Geological Hazard and Control,2016,27(4):120 − 129. (in Chinese with English abstract)]

    REN Feifan, HE Jiangyang. Research status review on dynamic properties of reinforced earth structure[J]. The Chinese Journal of Geological Hazard and Control, 2016, 27(4): 120 − 129. (in Chinese with English abstract)

    [5]

    徐超,金宇,杨阳,等. 路面荷载下包裹式加筋土桥台变形的试验研究[J]. 岩土力学,2023,44(增刊1):410 − 418. [XU Chao,JIN Yu,YANG Yang,et al. Experimental study of deformation of mixed reinforced soil abutment under pavement load[J]. Rock and Soil Mechanics,2023,44(Sup 1):410− 418. (in Chinese)]

    XU Chao, JIN Yu, YANG Yang, et al. Experimental study of deformation of mixed reinforced soil abutment under pavement load[J]. Rock and Soil Mechanics, 2023, 44(Sup 1): 410− 418. (in Chinese)

    [6]

    GEBREMARIAM F,TANYU B F,CHRISTOPHER B,et al. Evaluation of vertical stress distribution in field monitored GRS-IBS structure[J]. Geosynthetics International,2020,27(4):414 − 431. doi: 10.1680/jgein.20.00004

    [7]

    ZHAO Chongxi,XU Chao,WANG Qingming. Centrifuge model studies on the load-bearing characteristics of geosynthetic-reinforced soil abutment[C]// Engineering Geology for a Habitable Earth:IAEG XIV Congress 2023 Proceedings,Chengdu,China. Singapore:Springer Nature Singapore,2024:875 − 883.

    [8]

    王裘申,徐超,张振,等. 交通荷载下加筋土桥台工作性能试验研究[J]. 岩土力学,2022,43(12):3416 − 3425. [WANG Qiushen,XU Chao,ZHANG Zhen,et al. Experimental study on service performance of reinforced soil abutment subjected to traffic loads[J]. Rock and Soil Mechanics,2022,43(12):3416 − 3425. (in Chinese with English abstract)]

    WANG Qiushen, XU Chao, ZHANG Zhen, et al. Experimental study on service performance of reinforced soil abutment subjected to traffic loads[J]. Rock and Soil Mechanics, 2022, 43(12): 3416 − 3425. (in Chinese with English abstract)

    [9]

    XU Chao,LUO Minmin,SHEN Panpan,et al. Seismic performance of a whole Geosynthetic Reinforced Soil–Integrated Bridge System (GRS-IBS) in shaking table test[J]. Geotextiles and Geomembranes,2020,48(3):315 − 330. doi: 10.1016/j.geotexmem.2019.12.004

    [10]

    JIA Yafei,ZHANG Jun,TONG Lihong,et al. Cumulative deformation behavior of GRS bridge abutments under cyclic traffic loading[J]. Geosynthetics International,2025,32(1):94 − 108. doi: 10.1680/jgein.23.00144

    [11]

    孟亚,徐超,赵崇熙,等. 分离式加筋土桥台性能及气候因素的影响研究[J]. 华中科技大学学报(自然科学版),2024,52(9):118 − 126. [MENG Ya,XU Chao,ZHAO Chongxi,et al. Research on the performance of disconnect-type reinforced soil abutment and the influence of climatic factors on the abutment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2024,52(9):118 − 126. (in Chinese with English abstract)]

    MENG Ya, XU Chao, ZHAO Chongxi, et al. Research on the performance of disconnect-type reinforced soil abutment and the influence of climatic factors on the abutment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(9): 118 − 126. (in Chinese with English abstract)

    [12]

    REN Feifan,HUANG Qiangqiang,WANG Guan. Shaking table tests on reinforced soil retaining walls subjected to the combined effects of rainfall and earthquakes[J]. Engineering Geology,2020,267:105475. doi: 10.1016/j.enggeo.2020.105475

    [13]

    REN Feifan,HUANG Qiangqiang,GENG Xueyu,et al. Influence of groundwater level changes on the seismic response of geosynthetic-reinforced soil retaining walls[J]. Journal of Zhejiang University:Science A,2022,23(11):850 − 862. doi: 10.1631/jzus.A2200188

    [14]

    ADAMS M,NICKS J. Design and construction guidelines for geosynthetic reinforced soil abutments and integrated bridge systems[R]. United States:Federal Highway Administration,2018.

    [15]

    廖碧海,王国鼎. 巫山(新县城)超高加筋土挡土墙质量事故及原因分析[J]. 中南公路工程,2001,26(2):58 − 59. [LIAO Bihai,WANG Guoding. Quality accident and causes analysis of retaining wall with bar-soil at the superelevation section in Wushan[J]. Central South Highway Engineering,2001,26(2):58 − 59. (in Chinese)]

    LIAO Bihai, WANG Guoding. Quality accident and causes analysis of retaining wall with bar-soil at the superelevation section in Wushan[J]. Central South Highway Engineering, 2001, 26(2): 58 − 59. (in Chinese)

    [16]

    ABDULLAH N H H,NG K S,JAIS I B M,et al. Use of geosynthetic reinforced soil-integrated bridge system to alleviate settlement problems at bridge approach:A review[J]. Physics and Chemistry of the Earth,Parts A/B/C,2023,129:103304. doi: 10.1016/j.pce.2022.103304

    [17]

    HATAMI K,BOUTIN J. Influence of backfill type on the load-bearing performance of GRS bridge abutments[J]. Geosynthetics International,2022,29(5):506 − 519. doi: 10.1680/jgein.21.00052

    [18]

    刘海洋,王录仓,常跟应. 郑州“7•20” 特大暴雨灾害对中国铁路运网的冲击过程和机制[J]. 地理学报,2024,79(3):617 − 634. [LIU Haiyang,WANG Lucang,CHANG Genying. The impact process and mechanism of the superheavy rainfall event in Zhengzhou on July 20,2021 on the China’s railway transport network[J]. Acta Geographica Sinica,2024,79(3):617 − 634. (in Chinese with English abstract)] doi: 10.11821/dlxb202403005

    LIU Haiyang, WANG Lucang, CHANG Genying. The impact process and mechanism of the superheavy rainfall event in Zhengzhou on July 20, 2021 on the China’s railway transport network[J]. Acta Geographica Sinica, 2024, 79(3): 617 − 634. (in Chinese with English abstract) doi: 10.11821/dlxb202403005

    [19]

    NICKS J E,ESMAILI D,ADAMS M T. Deformations of geosynthetic reinforced soil under bridge service loads[J]. Geotextiles and Geomembranes,2016,44(4):641 − 653. doi: 10.1016/j.geotexmem.2016.03.005

    [20]

    上海市政工程设计研究总院,北京市市政工程设计研究总院,天津市市政工程设计研究院,兰州市城市建设设计院. 城市桥梁设计规范:CJJ11-2011[S]. 行业标准-城建,2019. [Shanghai Municipal Engineering Design Institute,Beijing Municipal Engineering Design Research Institute,Tianjin Municipal Engineering Design Institute,Lanzhou Urban Construction Design Institute. Design code for urban bridges:CJJ11-2011[S]. Industry Standard - Urban Construction,2019. (in Chinese)]

    Shanghai Municipal Engineering Design Institute, Beijing Municipal Engineering Design Research Institute, Tianjin Municipal Engineering Design Institute, Lanzhou Urban Construction Design Institute. Design code for urban bridges: CJJ11-2011[S]. Industry Standard - Urban Construction, 2019. (in Chinese)

    [21]

    XIONG Yonglin,BAO Xiaohua,YE Bin,et al. Soil–water–air fully coupling finite element analysis of slope failure in unsaturated ground[J]. Soils and Foundations,2014,54(3):377 − 395. doi: 10.1016/j.sandf.2014.04.007

    [22]

    谢轶,朱文轩,熊勇林,等. 非饱和路堑和路堤边坡地震响应的数值分析[J/OL]. 上海交通大学学报,2024:1 − 24. (2024-07-12)[2024-12-16]. [XIE Yi, ZHU Wenxuan, XIONGYonglin, et al. Numerical analysis of seismic response of unsaturated cutting and embankment slope[J/OL]. China Industrial Economics, 2024: 1 − 24. (2024-07-12)[2024-12-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SHJT20240708001&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)]

    XIE Yi, ZHU Wenxuan, XIONGYonglin, et al. Numerical analysis of seismic response of unsaturated cutting and embankment slope[J/OL]. China Industrial Economics, 2024: 1 − 24. (2024-07-12)[2024-12-16]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SHJT20240708001&dbname=CJFD&dbcode=CJFQ. (in Chinese with English abstract)

    [23]

    REN Feifan,HUANG Qiangqiang,CHEN Jianfeng. Centrifuge modeling of geosynthetic-reinforced soil retaining walls subjected to the combined effect of earthquakes and rainfall[J]. Geotextiles and Geomembranes,2022,50(3):470 − 479. doi: 10.1016/j.geotexmem.2022.01.005

    [24]

    周洪福,冯治国,石胜伟, 等. 川藏铁路某特大桥成都侧岸坡工程地质特征及稳定性评价[J]. 水文地质工程地质,2021,48(5):112 − 119. [ZHOU Hongfu,FENG Zhiguo,SHI Shengwei,et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology,2021,48(5):112 − 119. (in Chinese with English abstract)]

    ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, et al. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112 − 119. (in Chinese with English abstract)

    [25]

    杨豪,魏玉峰,张御阳,等. 基于离心试验的反倾层状岩质边坡内非贯通性裂缝变形特性分析[J]. 水文地质工程地质,2022,49(6):152 − 161. [YANG Hao,WEI Yufeng,ZHANG Yuyang,et al. An analysis of non-penetration cracks in anti-dip rock slope based on centrifugal test[J]. Hydrogeology & Engineering Geology,2022,49(6):152 − 161. (in Chinese with English abstract)]

    YANG Hao, WEI Yufeng, ZHANG Yuyang, et al. An analysis of non-penetration cracks in anti-dip rock slope based on centrifugal test[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 152 − 161. (in Chinese with English abstract)

    [26]

    郭延辉,杨溢,杨志全,等. 国产GB-InSAR在特大型水库滑坡变形监测中的应用[J]. 中国地质灾害与防治学报,2021,32(2):66 − 72. [GUO Yanhui,YANG Yi,YANG Zhiquan,et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):66 − 72. (in Chinese with English abstract)]

    GUO Yanhui, YANG Yi, YANG Zhiquan, et al. Application of GB-InSAR in deformation monitoring of huge landslide in reservoir area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 66 − 72. (in Chinese with English abstract)

  • 加载中

(11)

(3)

计量
  • 文章访问数:  23
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-12-16
修回日期:  2025-01-12
录用日期:  2025-03-03
刊出日期:  2025-04-25

目录