中国地质环境监测院
中国地质灾害防治工程行业协会
主办

极端降雨诱发浅层滑坡的重现期计算方法

谭畅, 周文超, 邓子昊, 吕庆, 于洋, 安妮. 极端降雨诱发浅层滑坡的重现期计算方法[J]. 中国地质灾害与防治学报, 2025, 36(2): 72-77. doi: 10.16031/j.cnki.issn.1003-8035.202412028
引用本文: 谭畅, 周文超, 邓子昊, 吕庆, 于洋, 安妮. 极端降雨诱发浅层滑坡的重现期计算方法[J]. 中国地质灾害与防治学报, 2025, 36(2): 72-77. doi: 10.16031/j.cnki.issn.1003-8035.202412028
TAN Chang, ZHOU Wenchao, DENG Zihao, LYU Qing, YU Yang, AN Ni. Calculation of the return period for shallow landslides triggered by extreme rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 72-77. doi: 10.16031/j.cnki.issn.1003-8035.202412028
Citation: TAN Chang, ZHOU Wenchao, DENG Zihao, LYU Qing, YU Yang, AN Ni. Calculation of the return period for shallow landslides triggered by extreme rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36(2): 72-77. doi: 10.16031/j.cnki.issn.1003-8035.202412028

极端降雨诱发浅层滑坡的重现期计算方法

  • 基金项目: 国家重点研发计划项目(2024YFC3012601);国家自然科学基金面上项目(42277132);浙江省重点研发计划项目(2021C03159)
详细信息
    作者简介: 谭 畅(2002—),女,博士研究生,主要从事气候影响下极端降雨事件对浅层滑坡的影响预测研究。E-mail:tanchang02@zju.edu.cn
    通讯作者: 吕 庆(1978—),男,教授,博导,主要从事地质灾害风险防控理论与技术研究。E-mail:lvqing@zju.edu.cn
  • 中图分类号: P642.22

Calculation of the return period for shallow landslides triggered by extreme rainfall

More Information
  • 为了在长时间尺度下定量评估极端降雨诱发浅层滑坡灾害的动态危险性,为东南地区地质灾害风险防治工作提供参考,文章提出了一种考虑降雨不确定性的浅层滑坡重现期计算方法。具体计算框架为:(1)基于Copula函数构建极端降雨平均强度-持续时间(I-D)联合分布;(2)基于地质条件与水文要素计算滑坡I-D阈值;(3)采用蒙特卡罗法模拟极端降雨事件I-D联合分布超过I-D阈值的概率,作为单次降雨条件下的边坡失效概率$ P_{F 1} $,进一步计算滑坡重现期。以浙江省马剑镇某滑坡隐患点为例验证该方法的可行性,得到其滑坡重现期的预测值为17 a。建议采取相关防治措施以降低灾害可能造成的损失。

  • 加载中
  • 图 1  研究斜坡示意图

    Figure 1. 

    图 2  研究方法

    Figure 2. 

    图 3  Copula函数的概率密度函数PDF图

    Figure 3. 

    图 4  斜坡剖面模型

    Figure 4. 

    图 5  斜坡SWCC曲线及渗透系数函数

    Figure 5. 

    图 6  I-D降雨阈值曲线

    Figure 6. 

    表 1  马剑站边际分布拟合优度检验结果

    Table 1.  Results of the goodness-of-fit test for the marginal distribution of the Majian station

    降雨强度(I
    Lognormal GEV GPD Exponential Gumbel
    AIC 834.9 832.4 850.5 856.5 920.2
    统计量(D 0.0678 0.0673 0.0961 0.1239 0.1517
    P-value 0.4239 0.4322 0.0921 0.0122 0.0010
    降雨持续时间(D
    Lognormal GEV GPD Exponential Gumbel
    AIC 1231.4 1233.9 1244.9 1250.3 1234.6
    统计量(D 0.0538 0.0544 0.1253 0.1562 0.0583
    P-value 0.7117 0.7001 0.0109 0.0006 0.6163
    下载: 导出CSV

    表 2  边际分布与Copula函数参数值

    Table 2.  Marginal distribution and Copula function parameter values

    I(GEV) D(Lognormal) Copula函数单参数($ \theta $)
    $ c $ −0.52 $s $ 0.54 7.8903
    $ \mu $ 3.34 $ {loc} $ −4.57
    $ \sigma $ 2.01 $ { scale } $ 19.32
    下载: 导出CSV

    表 3  斜坡土体参数表

    Table 3.  Soil parameters of the investigated slope

    岩土体水力参数 岩土体抗剪强度参数
    饱和体积含水率/% 50 饱和重度/(kN·m−3 21
    残余体积含水率/% 5 有效黏聚力/kPa 13
    饱和渗透系数/ (m·s−1 2×10−5 有效内摩擦角/(°) 18
    下载: 导出CSV
  • [1]

    周创兵,李典庆. 暴雨诱发滑坡致灾机理与减灾方法研究进展[J]. 地球科学进展,2009,24(5):477 − 487. [ZHOU Chuangbing,LI Dianqing. Advances in rainfall-induced landslides mechanism and risk mitigation[J]. Advances in Earth Science,2009,24(5):477 − 487. (in Chinese with English abstract)] doi: 10.3321/j.issn:1001-8166.2009.05.003

    ZHOU Chuangbing, LI Dianqing. Advances in rainfall-induced landslides mechanism and risk mitigation[J]. Advances in Earth Science, 2009, 24(5): 477 − 487. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2009.05.003

    [2]

    王芳,殷坤龙,桂蕾,等. 不同日降雨工况下万州区滑坡灾害危险性分析[J]. 地质科技情报,2018,37(1):190 − 195. [WANG Fang,YIN Kunlong,GUI Lei,et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou District[J]. Geological Science and Technology Information,2018,37(1):190 − 195. (in Chinese with English abstract)]

    WANG Fang, YIN Kunlong, GUI Lei, et al. Landslide hazard analysis under different daily rainfall conditions in Wanzhou District[J]. Geological Science and Technology Information, 2018, 37(1): 190 − 195. (in Chinese with English abstract)

    [3]

    LU Meng,ZHANG Jie,ZHENG Jianguo,et al. Assessing annual probability of rainfall-induced slope failure through a mechanics-based model[J]. Acta Geotechnica,2022,17(3):949 − 964. doi: 10.1007/s11440-021-01278-7

    [4]

    HE Zhengying, AKIYAMA M, ALHAMID A K, et al. Probabilistic life-cycle landslide assessment subjected to nonstationary rainfall based on alternating stochastic renewal process[J]. Engineering Geology,2024,338:107543.

    [5]

    PERES D J,CANCELLIERE A. Estimating return period of landslide triggering by Monte Carlo simulation[J]. Journal of Hydrology,2016,541:256 − 271. doi: 10.1016/j.jhydrol.2016.03.036

    [6]

    LIU Xin,WANG Yu. Analytical solutions for annual probability of slope failure induced by rainfall at a specific slope using bivariate distribution of rainfall intensity and duration[J]. Engineering Geology,2023,313:106969. doi: 10.1016/j.enggeo.2022.106969

    [7]

    LIU Xin,WANG Yu. Probabilistic hazard analysis of rainfall-induced landslides at a specific slope considering rainfall uncertainty and soil spatial variability[J]. Computers and Geotechnics,2023,162:105706. doi: 10.1016/j.compgeo.2023.105706

    [8]

    ZHANG J,ZHANG L M,TANG W H. Slope reliability analysis considering site-specific performance information[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(3):227 − 238. doi: 10.1061/(ASCE)GT.1943-5606.0000422

    [9]

    LIU Xin, WANG Yu. Reliability analysis of an existing slope at a specific site considering rainfall triggering mechanism and its past performance records[J]. Engineering Geology,2021,288:106144. doi: 10.1016/j.enggeo.2021.106144

    [10]

    孔锋,史培军,方建,等. 全球变化背景下极端降水时空格局变化及其影响因素研究进展和展望[J]. 灾害学,2017,32(2):165 − 174. [KONG Feng,SHI Peijun,FANG Jian,et al. Research progress and prospect of spatiotemporal pattern change of extreme precipitation and its influencing factors in the context of global change[J]. Journal of Catastrophology,2017,32(2):165 − 174.] doi: 10.3969/j.issn.1000-811X.2017.02.029

    KONG Feng, SHI Peijun, FANG Jian, et al. Research progress and prospect of spatiotemporal pattern change of extreme precipitation and its influencing factors in the context of global change[J]. Journal of Catastrophology, 2017, 32(2): 165 − 174. doi: 10.3969/j.issn.1000-811X.2017.02.029

    [11]

    VINNARASI R,DHANYA C T. Bringing realism into a dynamic copula-based non-stationary intensity-duration model[J]. Advances in Water Resources,2019,130:325 − 338. doi: 10.1016/j.advwatres.2019.06.009

    [12]

    KWON H H,LALL U. A copula-based nonstationary frequency analysis for the 2012–2015 drought in California[J]. Water Resources Research,2016,52(7):5662 − 5675. doi: 10.1002/2016WR018959

    [13]

    SARHADI A,BURN D H,AUSÍN M C,et al. Time-varying nonstationary multivariate risk analysis using a dynamic Bayesian copula[J]. Water Resources Research,2016,52(3):2327 − 2349. doi: 10.1002/2015WR018525

    [14]

    雷德鑫,易武,柳青,等. 三峡库区卧沙溪滑坡稳定性的可靠度及敏感性分析[J]. 安全与环境工程,2018,25(1):23 − 28. [LEI Dexin,YI Wu,LIU Qing,et al. Reliability and sensitivity analysis of woshaxi landslide stability in Three Gorges Reservoir area[J]. Safety and Environmental Engineering,2018,25(1):23 − 28. (in Chinese with English abstract)]

    LEI Dexin, YI Wu, LIU Qing, et al. Reliability and sensitivity analysis of woshaxi landslide stability in Three Gorges Reservoir area[J]. Safety and Environmental Engineering, 2018, 25(1): 23 − 28. (in Chinese with English abstract)

    [15]

    LU Meng,ZHENG Jianguo,ZHANG Jie,et al. On assessing the probability of rainfall-induced slope failure during a given exposure time[J]. Acta Geotechnica,2023,18(3):1255 − 1267. doi: 10.1007/s11440-022-01655-w

  • 加载中

(6)

(3)

计量
  • 文章访问数:  16
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-12-17
修回日期:  2025-03-18
录用日期:  2025-03-19
刊出日期:  2025-04-25

目录