Seasonal variations in trace elements and influencing factors in drip water from Kaiyuan Cave, Shandong Province
-
摘要:
选取山东淄博开元洞进行了为期15个月的洞穴滴水采集,开元洞位于中国北部山东半岛沿海的暖温带半湿润季风气候区。洞穴滴水地球化学分析结果表明:(1)洞内滴水点的滴水滴速变化对外界大气降水的变化响应迅速。(2)滴水中的Ca2+、Mg2+、Sr2+、Ba2+浓度都具有季节变化特征,但其具体表现和影响机制有所不同。(3)开元洞滴水的Sr/Ca、Ba/Ca比值的波动变化与洞外大气降水变化可能存在响应关系,滴水中的Mg/Ca、Sr/Ca和Mg/Sr比值,可能与强降水存在响应关系; 但是开元洞滴水中的Mg/Sr比值的变化与洞外气温并没有体现出响应关系。
Abstract:Drip water samples for 15 months were collected from the Kaiyuan Cave, Zibo City of Shandong Province, a cave located in a semi-humid monsoon climatic zone in coastal North China. Geochemical information suggests that: (1) the variations in dripping rates respond rapidly to the atmospheric precipitation outside the cave. (2) Although the Ca2+, Mg2+, Sr2+ and Ba2+ concentrations display significant seasonal variations, their behaviors and influencing mechanisms are rather different. (3) The Sr/Ca and Ba/Ca ratios of the drip water may respond to certain degree to the atmospheric precipitation outside of the cave, and, especially, the Mg/Ca, Sr/Ca and Mg/Sr ratios may well indicate heavy rainfall. However, the variations in Mg/Sr in the drip water do not respond obviously to surface air temperature.
-
Key words:
- drip water /
- trace elements /
- seasonal variations /
- influencing factors /
- Kaiyuan Cave
-
-
[1] Verheyden S, Keppens E, Fairchild I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions[J]. Chemical Geology, 2000, 169:131-144. doi: 10.1016/S0009-2541(00)00299-0
[2] Johnson K R, Hu C Y, Belshaw N S, et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006, 244:394-407. doi: 10.1016/j.epsl.2006.01.064
[3] 张美良, 朱晓燕, 林玉石, 等.洞穴滴(流)水的沉积及溶—侵蚀作用——以桂林盘龙洞为例[J].中国岩溶, 2007, 26(4):326-333. doi: 10.3969/j.issn.1001-4810.2007.04.009
ZHANG Meiliang, ZHU Xiaoyan, LIN Yushi, et al. Drip water deposits and erosion-dissolution process by drip water in karst cave——Taking the Panlong cave as an example[J]. Carsologica Sinica, 2007, 26(4):326-333. doi: 10.3969/j.issn.1001-4810.2007.04.009
[4] Cobb K M, Adkins J F, Partin J W, et al. Regional-scale climate influences on temporal variations of rainwater and cave dripwater oxygen isotopes in northern Borneo[J]. Earth and Planetary Science Letters, 2007, 263:207-220. doi: 10.1016/j.epsl.2007.08.024
[5] 蒲俊兵, 沈立成, 王翱宇, 等.重庆丰都雪玉洞水文地球化学指标的时空变化研究[J].中国岩溶, 2009, 28(1):49-54. doi: 10.3969/j.issn.1001-4810.2009.01.009
PU Junbing, SHEN Licheng, WANG Aoyu, et al. Space-time variation of hydro-geochemistry index of the Xueyu cave system in Fengdu county, Chongqing[J]. Carsologica Sinica, 2009, 28(1):49-54. doi: 10.3969/j.issn.1001-4810.2009.01.009
[6] Bradley C, Baker A, Jex C N, et al. Hydrological uncertainties in the modelling of cave drip-water δ18O and the implications for stalagmite palaeoclimate reconstructions[J]. Quaternary Science Reviews, 2010, 29:2201-2214. doi: 10.1016/j.quascirev.2010.05.017
[7] 张美良, 朱晓燕, 吴夏, 等.桂林洞穴滴水与现代碳酸钙δ18O记录的环境意义——以桂林七星岩NO.15支洞为例[J].沉积学报, 2015, 33(4):697-705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201504008
ZHANG Meiliang, ZHU Xiaoyan, WU Xia, et al. Environmental significance of δ18O record from cave drip water and recent carbonate deposit at No.15 Branching Cave of Seven Star Cave in Guilin[J]. Acta Sedimentologica Sinica, 2015, 33(4):697-705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201504008
[8] Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting-a monitoring study from NE India[J]. Chemical Geology, 2015, 402:111-124. doi: 10.1016/j.chemgeo.2015.03.011
[9] Fairchild I J, Baker A, Borsato A, et al. Annual to sub-annual resolution of multiple trace-element trends in speleothems[J]. Journal of the Geological Society, 2001, 158:831-841. doi: 10.1144/jgs.158.5.831
[10] Treble P, Shelley J M G, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216:141-153. doi: 10.1016/S0012-821X(03)00504-1
[11] Tremaine D M, Froelich P N. Speleothem trace element signatures: A hydrologic geochemical study of modern cave dripwaters and farmed calcite[J]. Geochimica et Cosmochimica Acta, 2013, 121:522-545. doi: 10.1016/j.gca.2013.07.026
[12] Casteel R C, Banner J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies[J]. Chemical Geology, 2015, 392:43-58. doi: 10.1016/j.chemgeo.2014.11.002
[13] Rau G C, Cuthbert M O, Andersen M S, et al. Controls on cave drip water temperature and implications for speleothem-based paleoclimate reconstructions[J]. Quaternary Science Reviews, 2015, 127:19-36. doi: 10.1016/j.quascirev.2015.03.026
[14] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269:80-95. doi: 10.1016/j.epsl.2008.01.051
[15] Mattey D P, Fairchild I J, Atkinson T C, et al. Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels Cave, Gibraltar[J]. Geological Society, London, Special Publications, 2010, 336:323-344. doi: 10.1144/SP336.17
[16] Ruan J Y, Hu C Y. Seasonal variations and environmental controls on stalagmite calcite crystal growth in Heshang Cave, central China[J]. Chinese Science Bulletin, 2010, 55(34):3929-3935. doi: 10.1007/s11434-010-4193-1
[17] Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy) [J]. Chemical Geology, 2001, 175:429-448. doi: 10.1016/S0009-2541(00)00337-5
[18] 衣成城, 李延勇, 李俊云, 等.芙蓉洞洞穴水离子浓度和元素比值变化特征及其环境意义[J].中国岩溶, 2011, 30(2):200-207. doi: 10.3969/j.issn.1001-4810.2011.02.013
YI Chengcheng, LI Tingyong, LI Junyun, et al. The variation of element ratio and ion concentration of cave water in the Furong Cave and their implications for environment research[J]. Carsologica Sinica, 2011, 30(2):200-207. doi: 10.3969/j.issn.1001-4810.2011.02.013
[19] Baldini J U L, Mcdermott F, Fairchild I J. Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records[J]. Chemical Geology, 2006, 235:390-404. doi: 10.1016/j.chemgeo.2006.08.005
[20] Borsato A, Johnston V E, Frisia S, et al. Temperature and altitudinal influence on karst dripwater chemistry: Implications for regional-scale palaeoclimate reconstructions from speleothems[J]. Geochimica et Cosmochimica Acta, 2016, 177:275-297. doi: 10.1016/j.gca.2015.11.043
[21] Casteel R C, Banner J L. Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies[J]. Chemical Geology, 2015, 392:43-58. doi: 10.1016/j.chemgeo.2014.11.002
[22] Duan W H, Ruan J Y, Luo W J, et al. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China[J]. Geochimica et Cosmochimica Acta, 2016, 183:250-266. doi: 10.1016/j.gca.2016.03.037
[23] Hu C Y, Henderson G M, Huang J H, et al. Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3):143-151. doi: 10.5038/1827-806X.37.3.1
[24] 周厚云, 王庆, 蔡炳贵.山东开元洞发现典型"北方型"石笋微生长层[J].第四纪研究, 2010, 30(2):441-442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201002023
ZHOU Houyun, WANG Qing, CAI Binggui. Typical northern type speleothem Micro-layers found in stalagmite KY1 collected from Kaiyuan Cave in Shandong Province, North China[J]. Quaternary Sciences, 2010, 30(2):441-442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201002023
[25] 王庆, 周厚云, 迟宏, 等.最近千年来山东半岛西部气候环境变化的石笋δ18O、δ13C记录(Ⅰ)[J].海洋地质与第四纪地质, 2015, 35(5):135-142. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a5feaed9-1778-4f64-9347-1babe114ccba
WANG Qing, ZHOU Houyun, CHI Hong, et al. The stalagmite records of climate and environment change on the western Shandong Peninsula during the past 1000 years: δ18O and δ13C values(I)[J]. Marine Geology & Quaternary Geology, 2015, 35(5):135-142. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=a5feaed9-1778-4f64-9347-1babe114ccba
[26] Wang Q, Zhou H Y, Cheng K, et al. The climate reconstruction in Shandong Peninsula, northern China, during the last millennium based on stalagmite laminae together with a comparison to δ18O[J]. Climate of the Past, 2016, 12:871-881. doi: 10.5194/cp-12-871-2016
[27] Baker A, Genty D. Fluorescence wavelength and intensity variations of cave waters[J]. Journal of Hydrology, 1999, 217:19-34. doi: 10.1016/S0022-1694(99)00010-4
[28] Trudgill S T, Pickles A M, Smettem K R J, et al. Soil-water residence time and solute uptake: 1. Dye tracing and rainfall events. Journal of Hydrology, 1983, 60(1-4): 257-279. doi: 10.1016/0022-1694(83)90026-4
[29] 王新中, 班凤梅, 潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素——以北京石花洞为例[J].第四纪研究, 2005, 25(2):258-264. doi: 10.3321/j.issn:1001-7410.2005.02.018
WANG XinZhong, BAN Fengmei, Pan Genxing. Temporal and spatial variation of cave dripwater geochemistry in Shihua Cave, Beijing, China[J]. Quaternary Sciences, 2005, 25(2):258-264. doi: 10.3321/j.issn:1001-7410.2005.02.018
[30] 班凤梅, 潘根兴, 蔡炳贵, 等.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J].中国岩溶, 2009, 28(3):243-248. doi: 10.3969/j.issn.1001-4810.2009.03.003
BAN Fengmei, PAN Genxing, CAI Binggui, et al. Temporal-spatial variation of concentration of the dripwater and its significance in the Shihua Cave, Beijing[J]. Carsologica Sinica, 2009, 28(3):243-248. doi: 10.3969/j.issn.1001-4810.2009.03.003
[31] 周福莉, 李廷勇, 陈虹利, 等.重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J].水土保持学报, 2012, 26(3):253-259. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201203052
ZHOU Fuli, LI Tingyong, CHEN Hongli, et al. Spatial and temporal variation of hydrogeochemical indices of the cave water in Furong Cave, Chongqing[J]. 2012, 26(3):253-259. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201203052
[32] Tatár E, Mihucz V G, Zámbó L, et al. Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Béke Cave of the Aggtelek karst system (Hungary)[J]. Applied Geochemistry, 2004, 19:1727-1733. doi: 10.1016/j.apgeochem.2004.03.011
[33] 郭正堂, 刘东生, 吴乃琴, 等.最后两个冰期黄土中记录的Heinrich型气候节拍[J].第四纪研究, 1996, 16(1):21-30. doi: 10.3321/j.issn:1001-7410.1996.01.003
GUO Zhengtang, LIU Dongsheng, WU Naiqin, et al. Heinrich-Rhythm pulses of climates recorded in loess of the last two glaciations[J]. Quaternary Sciences, 1996, 16(1):21-30. doi: 10.3321/j.issn:1001-7410.1996.01.003
[34] Broecker W S, Olson E A. Radiocarbon Measurements and Annual Rings in Cave Formations[J]. Nature, 1960, 185:93-94. doi: 10.1038/185093a0
[35] Karmann I, Jr F W C, Jr O V, et al. Climate influence on geochemistry parameters of waters from Santana-Pérolas cave system, Brazil[J]. Chemical Geology, 2007, 244:232-247. doi: 10.1016/j.chemgeo.2007.06.029
[36] McBride M B. Environmental Chemistry of Soils [M]. Oxford: Oxford University Press, 1994:406.
[37] 陈雪彬, 杨平恒, 蓝家程, 等.降雨条件下岩溶地下水微量元素变化特征及其环境意义[J].环境科学, 2014, 35(1):123-130. doi: 10.3969/j.issn.1007-0370.2014.01.040
CHEN Xuebin, YANG Pingheng, LAN Jiacheng, et al. Variation characteristics and environmental significant of trace elements under rainfall condition in karst groundwater[J]. Environmental Science, 2014, 35(1):123-130. doi: 10.3969/j.issn.1007-0370.2014.01.040
[38] Morse J W, Bender M L. Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems [J]. Chemical Geology, 1990, 82:265-277. doi: 10.1016/0009-2541(90)90085-L
[39] Gascoyne M. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies[J]. Journal of Hydrology, 1983, 61(1-3):213-222. doi: 10.1016/0022-1694(83)90249-4
[40] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology, 2000, 166:255-269. doi: 10.1016/S0009-2541(99)00216-8
[41] Atkinson T C. Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada[J]. Arctic and Alpine Research, 1983, 15(4):523-536. doi: 10.2307/1551238
[42] Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem[J]. Earth and Planetary Science Letters, 1998, 154:237-246. doi: 10.1016/S0012-821X(97)00116-7
[43] 黄嘉仪, 陈琳, 陈琼, 等.广东英德宝晶宫洞穴滴水元素季节变化与影响因素[J].环境科学, 2016, 37(5):1798-1804. http://d.old.wanfangdata.com.cn/Periodical/hjkx201605025
HUANG Jiayi, CHEN Lin, CHEN Qiong, et al. Seasonal variations and controlling factors of the element contents in drip waters collected from the Baojinggong Cave in Guangdong Province[J]. Environmental Science, 2016, 37(5):1798-1804. http://d.old.wanfangdata.com.cn/Periodical/hjkx201605025
[44] Zhou H Y, Wang Y, Huang L Y, et al. Speleothem Mg, Sr and Ba records during the MIS 5c-d, and implications for paleoclimate change in NE Sichuan, Central China[J]. Chinese Science Bulletin, 2011, 56: 3445-3450. doi: 10.1007/s11434-011-4681-y
[45] 张伟宏, 汪永进, 吴江滢, 等.南京葫芦洞石笋微量元素记录的末次冰消期气候变化[J].第四纪研究, 2014, 34(6):1227-1237. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201406011
ZHANG Weihong, WANG Yongjin, WU Jiangying, et al. Last deglacial climate variations inferred from trace elements in a stalagmite from Hulu Cave, Nanjing[J]. Quaternary Sciences, 2014, 34(6):1227-1237. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201406011
[46] Ku T L, Li H C. Speleothems as high-resolution paleoenvironment archives: Records from northeastern China[J]. Journal of Earth System Science, 1998, 107(4):321-330.
-