Cd元素的古海水化学性质及有孔虫壳体Cd/Ca比值的古海洋学意义

凤羽, 田军. Cd元素的古海水化学性质及有孔虫壳体Cd/Ca比值的古海洋学意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012
引用本文: 凤羽, 田军. Cd元素的古海水化学性质及有孔虫壳体Cd/Ca比值的古海洋学意义[J]. 海洋地质与第四纪地质, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012
FENG Yu, TIAN Jun. Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012
Citation: FENG Yu, TIAN Jun. Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 122-129. doi: 10.16562/j.cnki.0256-1492.2018.05.012

Cd元素的古海水化学性质及有孔虫壳体Cd/Ca比值的古海洋学意义

  • 基金项目:
    国家杰出青年科学基金“古海洋学”(41525020);国家自然科学基金“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051);上海市优秀学术带头人“新近纪南海碳酸盐补偿深度变化及其古气候意义”(A类,16XD1403000)
详细信息
    作者简介: 凤羽(1994—), 女, 硕士研究生, 海洋科学专业, E-mail:1632938@tongji.edu.cn
  • 中图分类号: P734.2

  • 蔡秋蓉编辑

Hydrochemical behaviors of Cd in paleoceans and a review of Cd/Ca ratio in foraminifera shells as a paleoeanographyic proxy

  • Cd元素是一种较为特殊的微量金属元素,其在海水中的浓度分布和P类似,且和P之间存在着线性关系,因此,可以用来恢复古海水的营养水平,并可进一步结合有孔虫壳体的碳同位素记录,得出不同水团在海气交换过程中的同位素变化,用以示踪水团来源。同时,Cd含量本身也是水团的保守参数,因而也可以反映水团混合和洋流模式的改变。有孔虫壳体对Cd元素的吸收使得其Cd/Ca成为海水Cd含量的记录者,无论在构造尺度、轨道尺度,还是在千年尺度上,有孔虫壳体的Cd/Ca对气候和洋流变化均有着清晰的响应,是一种重要的古海洋环境替代性指标。不过由于Cd、P并非完全线性相关,钙质壳体在不同环境下对Cd的吸收比例不同,各海区在重要地质时期的Cd/Ca数据尚不丰富,使得Cd/Ca比值作为一种古环境参数仍面临着诸多挑战。

  • 加载中
  • 图 1  全球大洋溶解Cd和P(PO43-)的关系(据文献[18])

    Figure 1. 

    图 2  东北太平洋(据文献[39])、南极洲(据文献[40])、西北大西洋(据文献[41])、东北大西洋(据文献[42])

    Figure 2. 

    图 3  末次盛冰期大西洋海水溶解Cd(Cdw)和δ13C关系LGM

    Figure 3. 

    图 4  佛罗里达海峡站位(KNR166-2-26JPC)在新仙女木时期(YD)和HS1期间海水Cd浓度记录

    Figure 4. 

  • [1]

    Sarnthein M, Winn K, Jung S J A, et al. Changes in East Atlantic Deepwater Circulation over the last 30, 000 years: Eight time slice reconstructions[J]. Paleoceanography, 1994, 9(2):209-267. doi: 10.1029/93PA03301

    [2]

    Slowey N C, Curry W B. Glacial-interglacial differences in circulation and carbon cycling within the upper western North Atlantic[J]. Paleoceanography, 1995, 10(4):715-732. doi: 10.1029/95PA01166

    [3]

    Zheng X Y, Jenkyns H C, Gale A S, et al. Changing ocean circulation and hydrothermal inputs during Ocean Anoxic Event 2 (Cenomanian-Turonian): Evidence from Nd-isotopes in the European shelf sea[J]. Earth & Planetary Sciences Letters, 2013, 375(8):338-348. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231075592/

    [4]

    Dera G, Prunier J, Smith P L, et al. Nd isotope constraints on ocean circulation, paleoclimate, and continental drainage during the Jurassic breakup of Pangea[J]. Gondwana Research, 2015, 27(4):1599-1615. doi: 10.1016/j.gr.2014.02.006

    [5]

    Wei R, Abouchami W, Zahn R, et al. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records[J]. Earth & Planetary Science Letters, 2016, 434:18-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af8f0e2c62a331367c0b7aaa932e2653

    [6]

    Marchal O, François R, Stocker T F, et al. Ocean thermohaline circulation and sedimentary 231Pa/230Th ratio[J]. Paleoceanography, 2000, 15(6):625-641. doi: 10.1029/2000PA000496

    [7]

    Mcmanus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834. doi: 10.1038/nature02494

    [8]

    Valley S, Lynch-Stieglitz J, Marchitto T M. Timing of Deglacial AMOC Variability from a High-resolution Seawater Cadmium Reconstruction[J]. Paleoceanography, 2017, 32(11). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017PA003099

    [9]

    Delaney M L, Boyle E A. Cd/Ca in late Miocene benthic foraminifera and changes in the global organic carbon budget[J]. Nature, 1987, 330(6144):156-159. doi: 10.1038/330156a0

    [10]

    Jr T M M, Oppo D W, Curry W B. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic[J]. Paleoceanography, 2002, 17(3):10-1-10-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2000PA000598

    [11]

    Rosenthal Y, Boyle E A, Labeyrie L, et al. Glacial enrichments of authigenic Cd And U in subantarctic sediments: A climatic control on the elements' oceanic budget?[J]. Paleoceanography, 1995, 10(3):395-413. doi: 10.1029/95PA00310

    [12]

    Jr T M M, Curry W B, Oppo D W. Zinc concentrations in benthic foraminifera reflect seawater chemistry[J]. Paleoceanography, 2000, 15(3):299-306. doi: 10.1029/1999PA000420

    [13]

    Marchitto T M, Ortiz J, Carriquiry J, et al. A 14, 000 year foraminiferal trace metal record of ENSO-influenced upwelling near southern Baja California[C]// AGU Fall Meeting, 2005.

    [14]

    Palmer M R, Brummer G J, Cooper M J, et al. Multi-proxy reconstruction of surface water pCO2, in the northern Arabian Sea since 29 ka[J]. Earth & Planetary Science Letters, 2010, 295(1-2):49-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edda7ae4357127c577e9ae50a1d295bb

    [15]

    Xie R C, Galer S J G, Abouchami W, et al. The cadmium-phosphate relationship in the western South Atlantic — The importance of mode and intermediate waters on the global systematics[J]. Marine Chemistry, 2015, 177:110-123. doi: 10.1016/j.marchem.2015.06.011

    [16]

    Boyle E A, Sclater F, Edmond J M. On the marine geochemistry of cadmium[J]. Nature, 1976, 263(5572):42-44. doi: 10.1038/263042a0

    [17]

    Boyle E A. Cadmium: Chemical tracer of deepwater paleoceanography[J]. Paleoceanography, 1988, 3(4):471-489. doi: 10.1029/PA003i004p00471

    [18]

    Elderfield H, Rickaby R E. Oceanic Cd/P ratio and nutrient utilization in the glacial Southern Ocean[J]. Nature, 2000, 405(6784):305. doi: 10.1038/35012507

    [19]

    Nozaki Y, Yamada M, Nakanishi T, et al. The distribution of radionuclides and some trace metals in the water columns of the Japan and Bonin trenches[J]. Oceanologica Acta, 1998, 21(3):469-484. doi: 10.1016/S0399-1784(98)80031-5

    [20]

    Quay P, Cullen J, Landing W, et al. Processes controlling the distributions of Cd and PO4 in the ocean[J]. Global Biogeochemical Cycles, 2015, 29(6):830-841. doi: 10.1002/2014GB004998

    [21]

    Price N M, Morel F M M. Cadmium and cobalt substitution for zinc in a marine diatom[J]. Nature, 1990, 344(6267):658-660. doi: 10.1038/344658a0

    [22]

    Morel F M M, Reinfelder J R, Roberts S B, et al. Zinc and carbon co-limitation of marine phytoplankton[J]. Nature, 1994, 369(6483):740-742. doi: 10.1038/369740a0

    [23]

    Morel F M M, Milligan A J, Saito M A. 6.05-marine bioinorganic chemistry: the role of trace metals in the oceanic cycles of major nutrients[J]. Treatise on Geochemistry, 2003, 6:113-143. https://www.sciencedirect.com/science/article/pii/B0080437516061089

    [24]

    Lane T W, Morel F M. A biological function for cadmium in marine diatoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9):4627. doi: 10.1073/pnas.090091397

    [25]

    Lee J G, Morel F. Replacement of zinc by cadmium in marine phytoplankton[J]. Marine Ecology Progress, 1995, 127(1):305-309. http://d.old.wanfangdata.com.cn/NSTLQK/10.3354-meps127305/

    [26]

    Cullen J T, Lane T W, Franç, et al. Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration[J]. Nature, 1999, 442(6758):1025-1028. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-46469/

    [27]

    Rijkenberg M J, Middag R, Laan P, et al. The distribution of dissolved iron in the West Atlantic Ocean.[J]. Plos One, 2014, 9(6):e101323. doi: 10.1371/journal.pone.0101323

    [28]

    Pagani M, Freeman K H, Ohkouchi N, et al. Comparison of water column [CO2aq] with sedimentary alkenone-based estimates: A test of the alkenone-CO2 proxy[J]. Paleoceanography, 2002, 17(4):21-1-21-12. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2002PA000756

    [29]

    Frew R D, Hunter K A. Influence of Southern Ocean waters on the cadmium-phosphate properties of the global ocean[J]. Nature, 1992, 360(6400):144-146. doi: 10.1038/360144a0

    [30]

    Cullen J T. On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: could chronic iron limitation of phytoplankton growth cause the kink?[J]. Limnology & Oceanography, 2006, 51(3):1369-1380. https://www.jstor.org/stable/3841183

    [31]

    Frew R, Bowie A, Croot P, et al. Macronutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom[J]. Deep Sea Research Part Ⅱ Topical Studies in Oceanography, 2001, 48(11-12):2467-2481. doi: 10.1016/S0967-0645(01)00004-2

    [32]

    Finkel Z V, Quigg A S, Chiampi R K, et al. Phylogenetic diversity in cadmium : phosphorus ratio regulation by marine phytoplankton[J]. Limnology & Oceanography, 2007, 52(3):1131-1138. https://www.jstor.org/stable/4499683

    [33]

    Abouchami W, Galer S J G, Baar H J W D, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J]. Earth & Planetary Science Letters, 2011, 305(1-2):83-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c92b9ff7045b10b3643deab6cba7ad2

    [34]

    Abouchami W, Galer S J G, Baar H J W D, et al. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian[J]. Geochimica Et Cosmochimica Acta, 2014, 127(3):348-367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3429a4f7caecbbaeec2b71a848d72c9a

    [35]

    Flegal A R, Yeats P A, Westerlund S. Cadmium, copper and nickel distributions at 4 stations in the eastern central and south Atlantic[J]. Marine Chemistry, 1995, 49(4):283-293. doi: 10.1016/0304-4203(95)00018-M

    [36]

    Geen A V, Mccorkle D C, Klinkhammer G P. Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments[J]. Paleoceanography, 1995, 10(2):159-169. doi: 10.1029/94PA03352

    [37]

    Broecker W S, Peng T H. Tracers in the Sea[M]. Eldigio, Palisades, New York, 1982.

    [38]

    Walsh R S, Hunter K A. Influence of phosphorus storage on the uptake of cadmium by the marine alga Macrocystis pyrifera[J]. Limnology & Oceanography, 1992, 37(7):1361-1369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4319/lo.1992.37.7.1361

    [39]

    Bruland K W. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific[J]. Earth & Planetary Science Letters, 1980, 47(2):176-198. https://www.sciencedirect.com/science/article/pii/0012821X80900357

    [40]

    Martin J H, Gordon R M, Fitzwater S E. Iron in Antarctic waters[J]. Nature, 1990, 345(6271):156-158. doi: 10.1038/345156a0

    [41]

    Bruland K W. Manganese, nickel, copper, zinc and cadmium in the western north Atlantic.P[J]. Trace Metals in Sea Water, 1983, 4.

    [42]

    Baar H J W D, Saager P M, Nolting R F, et al. Cadmium versus phosphate in the world ocean[J]. Marine Chemistry, 1994, 46(3):261-281. doi: 10.1016/0304-4203(94)90082-5

    [43]

    Broecker W S, Maier-Reimer E. The influence of air and sea exchange on the carbon isotope distribution in the sea[J]. Global Biogeochemical Cycles, 1992, 6(3):315-320. doi: 10.1029/92GB01672

    [44]

    Lynch-Stieglitz J, Geen A V, Fairbanks R G. Interocean exchange of glacial North Atlantic Intermediate Water: Evidence from subantarctic Cd/Ca and carbon isotope measurements[J]. Paleoceanography, 1996, 11(2):191-201. doi: 10.1029/95PA03772

    [45]

    Marchitto T M, Broecker W S. Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca[J]. Geochemistry Geophysics Geosystems, 2006, Q12003. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2006GC001323

    [46]

    Chappell J. Upper Quaternary warping and uplift rates in the Bay of Plenty and west coast, North Island, New Zealand[J]. New Zealand Journal of Geology & Geophysics, 1975, 18(1):129-154. https://www.tandfonline.com/doi/abs/10.1080/00288306.1975.10426351

    [47]

    Boyle E A. Cadmium and delta 13C paleochemical ocean distributions during the stage 2 glacial maximum[J]. Annual Review of Earth & Planetary Sciences, 1992, 20(1):245-287. https://www.annualreviews.org/doi/abs/10.1146/annurev.ea.20.050192.001333?journalCode=earth

    [48]

    Ohkouchi N, Kawahata H, Okada M, et al. Benthic foraminifera cadmium record from the western equatorial Pacific[J]. Marine Geology, 1995, 127(1):167-180. https://www.sciencedirect.com/science/article/abs/pii/002532279500009N

    [49]

    Mccorkle D C, Martin P A, Lea D W, et al. Evidence of a dissolution effect on benthic foraminiferal shell chemistry: δ13C, Cd/Ca, Ba/Ca, and Sr/Ca results from the Ontong Java Plateau[J]. Paleoceanography, 1995, 10(4):699-714. doi: 10.1029/95PA01427

    [50]

    Boyle E, Rosenthal Y. Chemical Hydrography of the South Atlantic During the Last Glacial Maximum: Cd vs. δ 13 C[M]// The South Atlantic. Springer Berlin Heidelberg, 1996: 423-443.

    [51]

    Boyle E A, Labeyrie L, Duplessly J C. Calcitic foraminiferal data confirmed by cadmium in aragonitic Hoeglundina : Application to the Last Glacial Maximum in the northern Indian Ocean[J]. Paleoceanography, 1995, 10(5):881-900. doi: 10.1029/95PA01625

    [52]

    Marchitto T M. Lack of a significant temperature influence on the incorporation of Cd into benthic foraminiferal tests[J]. Geochemistry Geophysics Geosystems, 2004, 5(10). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004GC000753

    [53]

    Rickaby R E M, Elderfield H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J]. Paleoceanography, 1999, 14(3):293-303. doi: 10.1029/1999PA900007

    [54]

    Boyle E A, Keigwin L. North Atlantic thermohaline circulation during the past 20, 000 years linked to high-latitude surface temperature[J]. Nature, 1987, 330(6143):35-40. doi: 10.1038/330035a0

    [55]

    Xie R C, Marcantonio F, Schmidt M W. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios[J]. Paleoceanography, 2012, 27(3), PA3221. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2012PA002337

    [56]

    Lynch-Stieglitz J, Schmidt M W, Curry W B. Evidence from the Florida Straits for Younger Dryas ocean circulation changes[J]. Paleoceanography, 2011, 26(1). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010PA002032

    [57]

    Marchitto T M, Curry W B, Oppo D W. Millennial-scale changes in North Atlantic circulation since the last glaciation[J]. Nature, 1998, 393(393):557-561. http://d.old.wanfangdata.com.cn/NSTLQK/10.1038-31197/

    [58]

    Sarnthein M, Winn K, Jung S J A, et al. Changes in East Atlantic Deepwater Circulation over the last 30, 000 years: Eight time slice reconstructions[J]. Paleoceanography, 1994, 9(2):209-267. doi: 10.1029/93PA03301

  • 加载中

(4)

计量
  • 文章访问数:  2474
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2018-02-13
修回日期:  2018-07-22
刊出日期:  2018-10-28

目录