-
摘要:
位于塔里木盆地以西的新特提斯洋的退出过程对认识中亚盆山耦合过程、海陆分布变化引起的干旱化甚至亚洲气候环境的形成演化具有重要意义,一直是亚洲新生代构造与气候研究的重点科学问题。通过在广泛收集新特提斯洋东段的塔西南盆地的相关低温热年代学、地球物理学、沉积学和古地磁年代学等国内外文献的基础上,介绍了西昆仑山、帕米尔高原、塔里木盆地和新特提斯洋的地质背景,分析了塔里木与帕米尔-西昆仑的盆山耦合关系,确定了塔西南盆地最后的海退时间是在晚始新世,分析了海退出现的主要成因, 认为构造因素是造成塔西南盆地早—中始新世海退的主要原因。
Abstract:The withdrawal the sea water from the Neo-Tethys in the west part of Tarim Basin brought about significant impacts to the Central Asia on basin-mountain coupling, sea-land distribution and associated aridification, and even the drastic changes of climate in the whole Asia. Therefore, it has been remained a key issue in the study of Cenozoic tectonics and climate in the region. On the basis of the data collected from the low temperature thermochronology, geophysics, sedimentology, and paleomagnetic chronology studies around the southwest Tarim Basin, this paper devotes to the description of geological background about the West Kunlun orogenic belt, Pamir Plateau, Tarim Basin, and the Neo-tethys, summarized the spatiotemporal relationship between the Tarim Basin and Pamir-West Kunlun, and reviewed the time of regression in the southwest Tarim Basin. After analyzing the mechanism about the sea water retreating from the southwest Tarim Basin, we suggest that the final sea water regression since the early-middle Eocene owes its origin to tectonic processes.
-
Key words:
- sea retreat /
- West Kunlun /
- Pamir /
- Southwest Tarim Basin
-
图 2 新生代中始新世新特提斯洋分布示意图(修改自文献[14])
Figure 2.
-
[1] Wang C, Zhao X, Liu Z, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4987-4992. doi: 10.1073/pnas.0703595105
[2] Tapponnier P, Mattauer M, Proust F, et al. Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan[J]. Earth and Planetary Science Letters, 1981, 52(2): 355-371. doi: 10.1016/0012-821X(81)90189-8
[3] Xi D, Cao W, Cheng Y, et al. Late Cretaceous biostratigraphy and sea-level change in the southwest Tarim Basin[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 441:516-527. doi: 10.1016/j.palaeo.2015.09.045
[4] Sun J, Xiao W, Windley B F, et al. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47Ma[J]. Tectonics, 2016, 35(2): 1-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0fe323ae1f488ad6b63eb67d3061c5f9
[5] Sun J, Ye J, Wu W, et al. Late Oligocene-Miocene mid-latitude aridification and wind patterns in the Asian interior[J]. Geology, 2010, 38: 515-518. doi: 10.1130/G30776.1
[6] Sun J, Windley B F. Onset of aridification by 34 Ma across the Eocene-Oligocene transition in Central Asia[J]. Geology, 2015, 43(11):1016-1018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f084675609d99cb72e539eca7871e8a4
[7] Sun J, Jiang, M. Eocene seawater retreat from the southwest Tarim Basin and implications for early Cenozoic tectonic evolution in the Pamir Plateau[J]. Tectonophysics, 2013, 588(2): 27-38.
[8] Wang X, Sun D, Chen F, et al. Cenozoic paleo-environmental evolution of the Pamir-Tien Shan convergence zone[J]. Journal of Asian Earth Sciences, 2014, 80: 84-100. doi: 10.1016/j.jseaes.2013.10.027
[9] 唐天福.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M].北京:科学出版社, 1989.
TANG Tianfu. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim Basin[M]. Beijing: Science Press, 1989.
[10] 郝诒纯, 曾学鲁, 郭宪璞.新疆塔里木盆地西部海相白垩纪及其沉积环境探讨[J].地质学报, 1987, 3(3): 205-217. http://www.cnki.com.cn/Article/CJFD1987-DZXE198703001.htm
HAO Yichun, ZENG Xuelu, GUO Xianpu. The marine Cretaceous in the western part of the Tarim Basin of Xinjiang and its depositional environments[J]. Acta Geologica Sinica, 1987, 3(3): 205-217. http://www.cnki.com.cn/Article/CJFD1987-DZXE198703001.htm
[11] 郭宪璞, 丁孝忠, 何希贤, 等.塔里木盆地中新生代海侵和海相地层研究的新进展[J].地质学报, 2002, 76(3): 299-307. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200203002
GUO Xianpu, Ding Xiaozhong, He Xixian, et al. New progress in the study of marine transgressional events and marine strata of the Meso-Cenozoic in the Tarim Basin[J]. Acta Geologica Sinica, 2002, 76(3): 299-307. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200203002
[12] 丁孝忠, 刘训, 吴绍祖, 等.塔里木盆地西部库孜贡苏地区白垩纪早第三纪沉积特征及沉积环境探讨[J].新疆地质, 1993, 11:179-190. http://www.cqvip.com/QK/82738X/199303/4001480518.html
DING Xiaozhong, LIU Xun, WU Shaozu, et al. Discussion on the Cretaceous-Paleogene sedimentary features and environments of Kuzgongsu area, western Tarim Basin[J]. Xinjiang Geology, 1993, 11:179-190. http://www.cqvip.com/QK/82738X/199303/4001480518.html
[13] Ritts B D, Yue Y, Graham S A, et al. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan[J]. American Journal of Science, 2008, 308(5): 657-678. doi: 10.2475/05.2008.01
[14] Bosboom R E, Dupont-Nivet G, Houben A P, et al. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299(3-4): 385-398. doi: 10.1016/j.palaeo.2010.11.019
[15] 宋天锐.塔里木盆地及邻区第三纪沉积岩系发育的探讨[J].地质论评, 1982, 28(4): 317-325. doi: 10.3321/j.issn:0371-5736.1982.04.004
SONG Tianrui. The development of Tertiary sedimentary sequences in the Tarim Basin and its neighbouring areas[J]. Geological Review, 1982, 28(4): 317-325. doi: 10.3321/j.issn:0371-5736.1982.04.004
[16] 雍天寿, 单金榜.白垩纪及早第三纪塔里木海湾的形成与发展[J].沉积学报, 1986, 4(3): 67-75. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198603006.htm
YONG Tianshou, SHAN Jinbang. The development and formation in the Tarim bay in Cretaceous-Paleogene ages[J]. Acta sedimentologica Sinica, 1986, 4(3): 67-75. http://www.cnki.com.cn/Article/CJFDTotal-CJXB198603006.htm
[17] 唐天福.新疆塔里木盆地西部白垩纪至早第三纪海相地层及含油性[M].北京:科学出版社. 1989.
TANG Tianfu. Characteristics and Sedimentary Environments of the Late Cretaceous to Early Tertiary Marine Strata in the Western Tarim Basin[M]. Beijing: Science Press, 1989.
[18] Sobel E, Dumitru T. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 1997, 102: 5043-5063. doi: 10.1029/96JB03267
[19] 王树基, 高存海.塔里木内陆盆地晚新生代干旱环境的形成与演变[J].第四纪研究, 1990, 10(4): 372-380. doi: 10.3321/j.issn:1001-7410.1990.04.010
WANG Shuji, GAO Cunhai. The formation and evolution of the arid environment of the inland Tarim Basin since late Cenozoicera[J]. Quatenary Geology, 1990, 10(4): 372-380. doi: 10.3321/j.issn:1001-7410.1990.04.010
[20] 方爱民, 马建英, 王世刚等.西昆仑-塔西南坳陷晚古生代以来的沉积构造演化[J].岩石学报, 2009, 25(12): 3396-3406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912025
FANG Aimin, MA Jianying, WANG Shigang, et al. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogen since late Paleozoic[J]. Acta Petrologica Sinica, 2009, 25(12): 3396-3406. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200912025
[21] Wang Z. Tectonic evolution of the western Kunlun orogenic belt, western China[J]. Journal of Asian Earth Sciences, 2004, 24(2): 153-161. doi: 10.1016/j.jseaes.2003.10.007
[22] Xiao W, Windley B, Hao J, et al. Arc-ophiolite obduction in the Western Kunlun Range (China): implications for the Palaeozoic evolution of central Asia[J]. Journal of the Geological Society, 2002, 159(13): 517-528. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001058.htm
[23] Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation[J]. Geological Society of America Bulletin, 2002, 114(114): 1257-1295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31db3d694f4205f4d62d5999f2fd2363
[24] Cao K, Wang G C, Bernet M, et al. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen[J]. Earth Planetary Sciences Letters, 2015, 432: 391-403. doi: 10.1016/j.epsl.2015.10.033
[25] Arnaud N O, Brunel M, Cantagrel J M, et al. High cooling and denudation rates at Kongur Shan, Eastern Pamir (Xinjiang, China) revealed by 40Ar/39Ar alkali feldspar thermochronology[J]. Tectonics, 1993, 12(6): 1335-1346. doi: 10.1029/93TC00767
[26] Wang E, Wan J, Liu J, et al. Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northern margin of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(8):1-15. http://www.researchgate.net/publication/248802843_Late_Cenozoic_geological_evolution_of_the_foreland_basin_bordering_the_West_Kunlun_range_in_Pulu_area_Constraints_on_timing_of_uplift_of_northern_margin_of_the_Tibetan_Plateau?ev=auth_pub
[27] Zheng H, Powell C M, An Z, et al. Pliocene uplift of the northern Tibetan Plateau[J]. Geology, 2000, 28(8): 715-718. doi: 10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2
[28] Sun J, Zhang L, Deng C, et al. Evidence for enhanced aridity in the Tarim Basin of China since 5.3Ma[J]. Quaternary Science Reviews, 2008, 27(9): 1012-1023. http://www.sciencedirect.com/science/article/pii/S0277379108000310
[29] Sun J, L Tungsheng. The Age of the Taklimakan Desert[J]. Science, 2006, 312(5780): 1621. doi: 10.1126/science.1124616
[30] Robinson A C. Mesozoic tectonics of the Gondwanan terranes of the Pamir Plateau[J]. Journal of Asian Earth Sciences, 2015, 102:170-179. doi: 10.1016/j.jseaes.2014.09.012
[31] Searle M P, Windley B F, Coward M P, et al. The closing of Tethys and the tectonics of the Himalaya[J]. Geological Society of America Bulletin, 1987, 98(6): 678-701. doi: 10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2
[32] Zeitler P K. Cooling history of the NW Himalaya, Pakistan[J]. Tectonics, 1985, 4(4): 127-151. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/TC004i001p00127
[33] Amidon W H, Hynek S A. Exhumational history of the north central Pamir[J]. Tectonics, 2010, 29(5):1-13. http://d.old.wanfangdata.com.cn/NSTLQK/10.1029-2009TC002589/
[34] 刘浪涛, 陈杰, 李涛.帕米尔、南天山及其会聚带现代河流沉积物碎屑锆石U-Pb测年[J].地震地质, 2017, 39(3): 497-516. doi: 10.3969/j.issn.0253-4967.2017.03.005
LIU Langtao, CHEN Jie, LI Tao. Detrital zircon U-Pb dating of modern rivers' deposits in Pamir, south Tian Shan and their convergence zone[J].Seismology and Geology, 2017, 39(3): 497-516. doi: 10.3969/j.issn.0253-4967.2017.03.005
[35] Sobel E R, Chen J, Schoenbohm L M, et al. Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen[J]. Earth and Planetary Science Letters, 2013, 363(2): 204-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c96bd3c01a444badeaadb8b4fcaf269c
[36] Fu B, Ninomiya Y, Guo J. Slip partitioning in the northeast Pamir-Tian Shan convergence zone[J]. Tectonophysics, 2010, 483(3-4): 344-364. doi: 10.1016/j.tecto.2009.11.003
[37] Thompson J, Burbank W, Li T, et al. Late Miocene northward propagation of the northeast Pamir thrust system, northwest China[J]. Tectonics, 2015, 34: 510. doi: 10.1002/2014TC003690
[38] Sun J, Liu W, Liu Z, et al. Extreme aridification since the beginning of the Pliocene in the Tarim Basin, western China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 189-200. doi: 10.1016/j.palaeo.2017.06.012
[39] 何登发.塔里木盆地构造演化与油气聚集[M].地质出版社, 1996.
HE Dengfa. Tarim basin tectonic evolution and oil-gas accumulation[M]. Geological publishing house, 1996.
[40] Sobel E R. Basin analysis and apatite fission-track thermochronology of the Jurassic-Paleogene southwest Tarim basin, NW China[D]. Stanford University, 1995.
[41] 崔军文, 郭宪璞, 丁孝忠, 等.西昆仑-塔里木盆地盆-山结合带的中新生代变形构造及其动力学[J].地学前缘, 2006, 13(4): 103-118. doi: 10.3321/j.issn:1005-2321.2006.04.009
CUI Junwen, GUO Xianpu, DING Xiaozhong, et al. Mesozoic-Cenozoic deformation structures and their dynamics in the basin-range junciton belt of the west Kunlun-Tarim basin. Earth Science Frontiers, 2006, 13(4): 103-118. doi: 10.3321/j.issn:1005-2321.2006.04.009
[42] 潘裕生.喀喇昆仑山-昆仑山地区地质演化[M].北京:科学出版社, 2000.
PAN Yusheng. Geological Evolution Karakoram and Kunlun Mountains Area[M]. Beijing: Science Press, 2000.
[43] 丁道桂, 罗月明.帕米尔地区碰撞构造与塔里木盆地的改造[J].石油与天然气地质, 2005, 26: 57-63. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200501009
DING Daogui, LUO Yueming. Collision structures in Pamir region and reformation of Tarim Basin[J].Oil and Gas Geology, 2005, 26: 57-63. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz200501009
[44] 丁道桂.西昆仑造山带与盆地[M].地质出版社, 1996.
DING Daogui. The Western Kunlun Orogenic Belt and Tarim Basin[M].Geological Publishing House, 1996.
[45] Suess E. Are great ocean depths permanent[J]. National Science, 1893, 2: 180-187.
[46] 孙东怀, 王鑫, 李宝锋, 等.新生代特提斯海演化过程及其内陆干旱化效应研究进展[J].海洋地质与第四纪地质, 2013, 33(4): 135-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=6ec1496a-48a3-42af-b720-42274e133768
SUN Donghuai, WANG Xin, LI Baofeng, et al. Evolution of Cenozoic tethys and its environmental effects on inland drought[J]. Marine Geology & Quaternary Geolgoy, 2013, 33(4): 135-151. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=6ec1496a-48a3-42af-b720-42274e133768
[47] DeCelles P G, Giles K A. Foreland basin systems[J]. Basin Research, 1996, 8(2): 105-123. doi: 10.1046/j.1365-2117.1996.01491.x
[48] 刘和甫.盆地-山岭耦合体系与地球动力学机制[J].地球科学, 2001 26: 581-596. doi: 10.3321/j.issn:1000-2383.2001.06.005
LIU Hefu. Geodynamic scenario of coupled basin and mountain system[J]. Earth Science, 2001 26: 581-596. doi: 10.3321/j.issn:1000-2383.2001.06.005
[49] Kao H, Gao R, Rau R J, et al. Seismic image of the Tarim basin and its collision with Tibet[J]. Geology, 2001, 29(7): 575-578. doi: 10.1130/0091-7613(2001)029<0575:SIOTTB>2.0.CO;2
[50] Lyon-Caen H, Molnar P. Gravity anomalies and the structure of western Tibet and the southern Tarim Basin[J]. Geophysical Research Letters, 1984, 11(12): 1251-1254. doi: 10.1029/GL011i012p01251
[51] Gao R, Huang D, Lu D, et al. Deep seismic reflection profile across the juncture zone between the Tarim Basin and the West Kunlun Mountains[J]. Chin. Sci. Bull, 2000, 45(24): 2281-2286. doi: 10.1007/BF02886369
[52] Wittlinger G, Vergne J, Tapponnier P, et al. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth Planetary Science Letters, 2004, 221(1-4): 117-130. doi: 10.1016/S0012-821X(03)00723-4
[53] 贾承造.中国塔里木盆地构造特征与油气[M].石油工业出版社, 1997.
JIA Chengzao. Tectonic characteristics and petroleum Tarim Basin China[M]. Petroleum Industry Press, 1997.
[54] 阳怀忠.塔里木盆地中央隆起带隆坳格局变迁及其构造控制机制分析[D].中国地质大学, 2010.
http://cdmd.cnki.com.cn/article/cdmd-10491-2010250512.htm YANG Huaizhong. Research on Uplift-Depression framework evolution and its tectonic control Mechanism in the Central uplift Belt, Tarim Basin[D]. China Univertisy of Geosciences, 2010.
[55] Cowgill E. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J]. Geological Society of America Bulletin, 2010, 122(1): 145-161. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e555d5eb72135b458b7ef93b0952e420
[56] Liu D, Li H, Sun Z, et al. Cenozoic episodic uplift and kinematic evolution between the Pamir and Southwestern Tien Shan[J]. Tectonophysics, 2017, 712-713(21):438-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e452593c02b0ca05f9e1b1adfc68adc
[57] Jiang X, Li Z X, Li H. Uplift of the West Kunlun Range, northern Tibetan Plateau, dominated by brittle thickening of the upper crust[J]. Geology, 2013, 41(4): 439-442. doi: 10.1130/G33890.1
[58] Hu J Z, Tan Y J, Zhang P, et al. Structural features of Cenozoic thrust-fault belts in the piedmont of southwestern Tarim basin[J]. Earth Science Frontiers, 2008, 15(2): 222-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200802025
[59] Ding X Z, Lin C S, Liu J Y, et al. The sequence stratigraphic response to the basin-orogene coupling process of Cretaceous-Neogene in Tarim Basin, China[J]. Earth Science Frontiers, 2011, 18(4):144-157. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104012
[60] Sun J, Windley B F, Zhang Z, et al. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene[J]. Journal of Asian Earth Sciences, 2016, 116: 222-231. doi: 10.1016/j.jseaes.2015.11.020
[61] Bosboom R, Dupont-Nivet G, Grothe A, et al. Timing, cause and impact of the late Eocene stepwise sea retreat from the Tarim Basin (west China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 403(2): 101-118. http://www.sciencedirect.com/science/article/pii/S0031018214001709
[62] Bosboom R, Dupont-Nivet G, Mandic O, et al. Late Eocene paleogeography of the Proto-Paratethys Sea in Central Asia (NW China, S Kyrgyzstan and SW Tajikistan)[J]. Geological Society London Special Publications, 2015, 34: 743-746. http://www.researchgate.net/publication/281330940_Late_Eocene_paleogeography_of_the_Proto-Paratethys_Sea_in_Central_Asia_NW_China_S_Kyrgyzstan_and_SW_Tajikistan
[63] Carrapa B, Decelles P G, Wang X, et al. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia[J]. Earth Planetary Science Letters, 2015, 424:168-178. doi: 10.1016/j.epsl.2015.05.034
[64] Bosboom R. Paleogeography of the Central Asian Proto-Paratethys Sea in the Eocene[D]. 2013.
[65] Burtman V S. Cenozoic crustal shortening between the Pamir and Tien Shan and a reconstruction of the Pamir-Tien Shan transition zone for the Cretaceous and Palaeogene[J]. Tectonophysics, 2000, 319(2): 69-92. doi: 10.1016/S0040-1951(00)00022-6
[66] Zachos J P, Mark Sloan, Lisa Thomas, et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present[J]. Science, 2001, 292(5517): 686-693. doi: 10.1126/science.1059412
[67] Jin X, Wang J, Chen B, et al. Cenozoic depositional sequences in the piedmont of the west Kunlun and their paleogeographic and tectonic implications[J]. Journal of Asian Earth Sciences, 2003, 21(7): 755-765. doi: 10.1016/S1367-9120(02)00073-1
[68] Bazhenov, M. L., Burtman, V, S. Tectonics and paleomagnetism of structural arcs of the Pamir-Punjab syntaxis[J]. Journal of geodynamics, 1986, 5(3-4): 383-396. doi: 10.1016/0264-3707(86)90017-7
[69] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present)[J]. Science, 1987, 235: 1156-1167. doi: 10.1126/science.235.4793.1156
[70] Sippl C, Schurr B, Yuan X, et al. Geometry of the Pamir-Hindu Kush intermediate-depth earthquake zone from local seismic data[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4):1438-1457. doi: 10.1002/jgrb.50128
[71] Negredo A M, Replumaz A, Villaseñor A, et al. Modeling the evolution of continental subduction processes in the Pamir-Hindu Kush region[J]. Earth and Planetary Science Letters, 2007, 259(1): 212-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61398dd57a9627c1cbd3a58ca0cb6900
[72] Yu L. The Huanghe (Yellow) River: Recent changes and its countermeasures[J]. Continental Shelf Research, 2006, 26 (1): 2281-2298. http://www.sciencedirect.com/science/article/pii/S0278434306002457