联合深层地热甲烷水合物开采方法及可行性评价

孙致学, 朱旭晨, 刘垒, 何楚翘, 都巾文. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402
引用本文: 孙致学, 朱旭晨, 刘垒, 何楚翘, 都巾文. 联合深层地热甲烷水合物开采方法及可行性评价[J]. 海洋地质与第四纪地质, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402
SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402
Citation: SUN Zhixue, ZHU Xuchen, LIU Lei, HE Chuqiao, DU Jinwen. Feasibility study on joint exploitation of methane hydrate with deep geothermal energy[J]. Marine Geology & Quaternary Geology, 2019, 39(2): 146-156. doi: 10.16562/j.cnki.0256-1492.2018120402

联合深层地热甲烷水合物开采方法及可行性评价

  • 基金项目:
    国家自然科学基金“基于离散-连续介质模型的水-EGS传质传热机理及数值模拟研究”(51774317);中央高校基本科研业务费专项资金“海域天然气水合物形成/分解跨尺度研究方法及数值模拟”(18CX02100A)
详细信息
    作者简介: 孙致学(1979—),男,博士,副教授,从事天然气水合物分解机理及开采数值模拟研究,E-mail: upcszx@upc.edu.cn
  • 中图分类号: P744

  • 蔡秋蓉编辑

Feasibility study on joint exploitation of methane hydrate with deep geothermal energy

  • 随着全球能源消耗不断增加,天然气水合物和地热资源具有储量丰富、清洁高效等优势成为世界研究的热点,中国南海海域同时具有丰富的水合物资源和地热资源。由此,提出了联合深层地热资源开采浅部水合物的方法,通过向深层地热储层注入海水,海水在深层地热中吸收热量后循环至浅部水合物储层,结合降压法和注热法促使水合物分解。利用数值模拟对联合法的可行性进行评估,并对地层热物性、开采参数等储层敏感性进行分析。模拟结果表明:联合法能够有效地利用深层地热将海水加热,海水进入水合物层时的温度保持约为50℃,与注热法和降压法相比具有更高的产气量,具有良好的可行性;注入速度、井底压力、地层导热系数和地温梯度对联合法开采效果具有显著影响;注入速度和井底压力对前期的产气效果影响较大,而较大的地层导热系数有利于海水与地层的换热;地温梯度小于0.025 m/℃时,联合方法的换热性能极大减弱,甲烷累计产气量大幅度降低,联合方法的商业价值降低,可行性减弱。

  • 加载中
  • 图 1  联合开采方法系统

    Figure 1. 

    图 2  井位分布

    Figure 2. 

    图 3  地热储层温度变化

    Figure 3. 

    图 4  水合物储层入口端温度变化

    Figure 4. 

    图 5  换热井水平段温度分布

    Figure 5. 

    图 6  水合物储层压力分布

    Figure 6. 

    图 7  联合法水合物储层温度分布

    Figure 7. 

    图 8  注热法水合物储层温度分布

    Figure 8. 

    图 9  降压法水合物储层温度分布

    Figure 9. 

    图 10  甲烷产气速度与累计产量

    Figure 10. 

    图 11  地热储层温度变化

    Figure 11. 

    图 12  水合物储层入口端温度变化

    Figure 12. 

    图 13  甲烷累计产气量

    Figure 13. 

    图 14  甲烷产气速度

    Figure 14. 

    图 15  甲烷累计产气量

    Figure 15. 

    图 16  甲烷产气速度

    Figure 16. 

    图 17  地热储层温度变化

    Figure 17. 

    图 18  水合物储层入口端温度变化

    Figure 18. 

    图 19  甲烷累计产气量

    Figure 19. 

    图 20  甲烷产气速度

    Figure 20. 

    图 21  地热储层温度变化

    Figure 21. 

    图 22  水合物储层入口端温度变化

    Figure 22. 

    图 23  甲烷累计产气量

    Figure 23. 

    图 24  甲烷产气速度

    Figure 24. 

    表 1  水合物动力学参数设置

    Table 1.  Parameters of hydrate kinetic properties

    参数 CH4·nH2O
    Kd0, gmole/(s·Pa·m2) 1.24×105
    Kf0, gmole/(s·Pa·m2) 2.9×103
    Adec, m2/m3 3.75×105
    ΔE, J/mol 81084.2
    H, J/mol 54490.0
    下载: 导出CSV

    表 2  数值模型参数设置

    Table 2.  Parameter for numerical models

    参数 数值 单位
    顶部深度 1408 m
    水合物储层厚度 30 m
    岩石体积热容量 2.12×106 J/(m3·K)
    水合物热熔 1600 J/(kg·K)
    岩石导热系数 5 W/(m·K)
    水合物导热系数 3.92 W/(m·K)
    水的导热系数 0.60 W/(m·K)
    气体导热系数 0.03 W/(m·K)
    绝缘层导热系数 0.2 W/(m·K)
    水合物储层初始含水饱和度 0.6
    水合物储层初始含气饱和度 0
    水合物储层初始水合物饱和度 0.4
    深度,d - m
    初始地层压力 9800*d Pa
    岩石密度 2650 kg/m3
    CH4·nH2O密度 919.7 kg/m3
    下载: 导出CSV
  • [1]

    Klauda J B, Sandler S I. Global distribution of methane hydrate in ocean sediment[J]. Energy & Fuels, 2005, 19(2): 459-470.

    [2]

    Konno Y, Masuda Y, Akamine K, et al. Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method[J]. Energy Conversion & Management, 2016, 108:439-445. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1294ffa686fe21ff5d8962c0a33e6d5

    [3]

    Falser S, Uchida S, Palmer A C, et al. Increased gas production from hydrates by combining depressurization with heating of the wellbore[J]. Energy Fuels, 2012, 26(10):6259-6267. doi: 10.1021/ef3010652

    [4]

    Islam M R. A new recovery technique for gas production from Alaskan gas hydrates[J]. Journal of Petroleum Science & Engineering, 1991, 11(4):267-281.

    [5]

    唐良广, 李刚, 冯自平, 等.热力法开采天然气水合物的数学模拟[J].天然气工业, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033

    TANG Liangguang, LI Gang, FENG Ziping, et al. Mathematic modeling on thermal recovery of natural gas hydrate[J]. Natureal Gas lndustry, 2006, 26(10):105-107. doi: 10.3321/j.issn:1000-0976.2006.10.033

    [6]

    Fitzgerald G C, Castaldi M J, Schicks J M. Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media[J]. Industrial & Engineering Chemistry Research, 2014, 53(16):6840-6854. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=57fea6a51ecb6751922735da7f6627b4

    [7]

    Wang Y, Feng J C, Li X S, et al. Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization[J]. Applied Energy, 2016, 181:299-309. doi: 10.1016/j.apenergy.2016.08.023

    [8]

    Wang Y, Feng J C, Li X S, et al. Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs[J]. International Journal of Heat & Mass Transfer, 2018, 118:1115-1127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2a68854081ac571a8bb81c7ffc68998

    [9]

    Wang Y, Feng J C, Li X S, et al. Analytic modeling and large-scale experimental study of mass and heat transfer during hydrate dissociation in sediment with different dissociation methods[J]. Energy, 2015, 90:1931-1948. doi: 10.1016/j.energy.2015.07.029

    [10]

    Ohgaki K, Takano K, Sangawa H, et al. Methane exploitation by carbon dioxide from gas hydrates -phase equilibria for CO2-CH4 mixed hydrate system[J]. Journal of Chemical Engineering of Japan, 1996, 29(3):478-483. doi: 10.1252/jcej.29.478

    [11]

    Yezdimer E M, Cummings P T, Chialvo A A. Determination of the Gibbs free energy of gas replacement in SI clathrate hydrates by molecular simulation[J]. Journal of Physical Chemistry, 2002, 106(34):7982-7987. doi: 10.1021/jp020795r

    [12]

    Uddin M, Coombe D A, Law H S, et al. Numerical studies of gas hydrate formation and decomposition in a geological reservoir[J]. Journal of Energy Resources Technology, 2008, 130(3):032501-1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3bc22ce759981cba290b6b6f63eeae88

    [13]

    Uddin M, Coombe D, Wright F. Modeling of CO2-hydrate formation in geological reservoirs by injection of CO2 gas[J]. Journal of Energy Resources Technology Transactions of the Asme, 2008, 130(3):102-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=56c4d61bb0450e5712a9170354987ab5

    [14]

    Bertani R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60(1):31-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=008286d0fc7e28ebead100b697d2be77

    [15]

    Liu C, Meng Q, He X, et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine & Petroleum Geology, 2015, 61(61):14-21.

    [16]

    李彦龙.我国海域天然气水合物试开采圆满完成并取得历史性突破[J].海洋地质与第四纪地质, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507

    LI Yanlong. Successful completion and historic breakthrough of natural gas hydrate trial production in China′s offshore areas[J]. Marine Geology & Quaternary Geology, 2017, 37(5):34. http://hydz.chinajournal.net.cn/WKD/WebPublication/paperDigest.aspx?paperID=4f0c459a-7f39-4e5f-9697-dcf201702507

    [17]

    Li Y, Jiang Z, Jiang S, et al. Heat flow and thermal evolution of a passive continental margin from shelf to slope-A case study on the Pearl River Mouth Basin, northern South China Sea[J]. Journal of Asian Earth Sciences, 2017.

    [18]

    宁伏龙, 蒋国盛, 汤凤林, 等.利用地热开采海底天然气水合物[J].天然气工业, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038

    NING Fulong, JIANG Guosheng, TANG Fenglin, et al.Utilizing geothermal energy to exploit marine gas hydrate[J]. Natureal Gas lndustry, 2006, 26(12):136-138. doi: 10.3321/j.issn:1000-0976.2006.12.038

    [19]

    窦斌, 秦明举, 蒋国盛, 等.利用地热开采南海天然气水合物的技术研究[J].海洋地质前沿, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007

    DOU Bin, QIN Mingju, JIANG Guosheng, et al. A discussion on technology for gas hydrates production in the South China Sea using geothermal as an energy source[J].Marine Geology Frontiers, 2011(10):49-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201110007

    [20]

    Liu Y, Hou J, Zhao H, et al. A method to recover natural gas hydrates with geothermal energy conveyed by CO2[J]. Energy, 2018, 144:265-278. doi: 10.1016/j.energy.2017.12.030

    [21]

    冯景春, 李小森, 王屹, 等.三维实验模拟双水平井联合法开采天然气水合物[J].现代地质, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023

    FENG Jingchun, LI Xiaosen, WANG Yi, et al.Three-dimension experimental investigation of hydrate dissociation by the combined method with dual horizontal wells[J]. Geoscience, 2016, 30(4):929-936. doi: 10.3969/j.issn.1000-8527.2016.04.023

    [22]

    李淑霞, 王炜, 陈月明, 等.多孔介质中天然气水合物注热开采影响因素实验研究[J].海洋地质前沿, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008

    LI Shuxia, WANG Wei, CHEN Yueming, et al. Experimental study on influence factors of hot-brine stimulation for dissociation of ngh in porous medium[J].Marine Geology Frontiers, 2011, 27(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201106008

    [23]

    Dornan P, Alavi S, Woo T K. Free energies of carbon dioxide sequestration and methane recovery in clathrate hydrates[J]. Journal of Chemical Physics, 2007, 127(12):52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d4e9f3915f857fc6a5a8cf372591a699

    [24]

    Vysniauskas A, Bishnoi P R. A kinetic study of methane hydrate formation[J]. Chemical Engineering Science, 1983, 38(7):1061-1072. doi: 10.1016/0009-2509(83)80027-X

    [25]

    Anderson G K. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation[J]. Journal of Chemical Thermodynamics, 2004, 36(12):1119-1127. doi: 10.1016/j.jct.2004.07.005

    [26]

    张伟, 梁金强, 何家雄, 等.南海北部神狐海域GMGS1和GMGS3钻探区天然气水合物运聚成藏的差异性[J].天然气工业, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018

    ZHANG Wei, LIANG Jinqiang, HE Jiaxiong, et al. Differences in natural gas hydrate migration and accumulation between GMGS1 and GMGS3 drilling areas in the Shenhu area, northern South China Sea[J]. Natural Gas Industry, 2018, 38(3):138-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201803018

    [27]

    万义钊, 吴能友, 胡高伟, 等.南海神狐海域天然气水合物降压开采过程中储层的稳定性[J].天然气工业, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

    WAN Yizhao, WU Nengyou, HU Gaowei, et al. Reservoir stability in the process of natural gas hydrate production by depressurization in the Shenhu area of the South China Sea[J]. Natural Gas Industry, 2018, 38(4):117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201804015

  • 加载中

(24)

(2)

计量
  • 文章访问数:  2810
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2018-12-04
修回日期:  2019-01-09
刊出日期:  2019-04-28

目录