东亚和南亚典型大河三角洲晚第四纪地层结构及成因对比

潘大东, 王张华. 东亚和南亚典型大河三角洲晚第四纪地层结构及成因对比[J]. 海洋地质与第四纪地质, 2020, 40(1): 12-21. doi: 10.16562/j.cnki.0256-1492.2019012901
引用本文: 潘大东, 王张华. 东亚和南亚典型大河三角洲晚第四纪地层结构及成因对比[J]. 海洋地质与第四纪地质, 2020, 40(1): 12-21. doi: 10.16562/j.cnki.0256-1492.2019012901
PAN Dadong, WANG Zhanghua. A comparative study on the Late Quaternary stratigraphic architecture and formation of megadeltas in East and South Asia[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 12-21. doi: 10.16562/j.cnki.0256-1492.2019012901
Citation: PAN Dadong, WANG Zhanghua. A comparative study on the Late Quaternary stratigraphic architecture and formation of megadeltas in East and South Asia[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 12-21. doi: 10.16562/j.cnki.0256-1492.2019012901

东亚和南亚典型大河三角洲晚第四纪地层结构及成因对比

  • 基金项目: 闽南师范大学博士科研启动费“末次冰消期以来九龙江三角洲年代地层框架和沉积相演变”(4103L21710)
详细信息
    作者简介: 潘大东(1983—),男,博士,讲师,主要从事河口-三角洲沉积地貌与第四纪环境研究,E-mail:dadongdedou@163.com
    通讯作者: 王张华(1973—),女,教授,博士生导师,主要从事河口-三角洲古环境研究,E-mail:zhwang@geo.ecnu.edu.cn
  • 中图分类号: P534.63

A comparative study on the Late Quaternary stratigraphic architecture and formation of megadeltas in East and South Asia

More Information
  • 通过整理东亚、南亚典型河口三角洲末次冰消期以来演化历史的研究进展,对比各河口晚第四纪地层结构、沉积体系演替和三角洲开始建造的时间,分析其沉积历史的主要控制因素。结果显示,末次冰消期以来各河口具相似的地层结构和演变过程,即早全新世下切古河谷充填和河口湾发育,中—晚全新世三角洲建造,该过程主要受海平面变化的控制。但是各河口地层结构和沉积历史也存在差异,其中以三角洲开始建造的时间差别最为明显。对比发现这种差异与流域地貌、基岩以及河口沉积盆地的差别有关。流程短、流域基岩易侵蚀的河流,入海泥沙量大,其三角洲开始建造的时间显著早于其他河流,其中以恒河三角洲最为典型。另外,以珠江三角洲为典型,其半封闭、基底浅的河口沉积盆地特征,也有助于中全新世湾顶三角洲的建造。

  • 加载中
  • 图 1  珊瑚礁记录的末次盛冰期以来全球海平面波动[15]

    Figure 1. 

    图 2  长江三角洲纵向地层剖面[32] (图中年龄未经日历校正)

    Figure 2. 

    图 3  长江三角洲全新世层序地层结构[46]

    Figure 3. 

    图 4  珠江三角洲典型纵向地层剖面[13]

    Figure 4. 

    图 5  珠江河口晚第四纪—早全新世沉积环境演化的主要阶段[13]

    Figure 5. 

    图 6  红河三角洲冰后期沉积物A-B和C-D纵剖面层序地层解释[10]

    Figure 6. 

    图 7  湄公河三角洲典型纵向地层剖面[39]

    Figure 7. 

    图 8  湄公河三角洲和越南东南大陆架在12,10,9.5,8.5 cal.kaBP时的古地理解释[39]

    Figure 8. 

    图 9  恒河-布拉马普特拉河三角洲晚第四纪层序地层[14]

    Figure 9. 

    表 1  五大三角洲开始建造时间对比

    Table 1.  A comparison of delta initiation time in South and East Asian

    三角洲开始建造时间/cal.kaBP参考文献
    长江三角洲8[8-9]
    红河三角洲8.5[7]
    9[10]
    湄公河三角洲8.0[11]
    8.2[12]
    珠江三角洲8.0[13]
    恒河三角洲11[14]
    下载: 导出CSV

    表 2  东、南亚五大河流建坝前水文泥沙特征

    Table 2.  Characteristics of Hydrology and sediment load before dam construction for Eeast and South Asia rivers

    河流流域面积/km2长度/km年径流量/km3年输沙量/t数据年份入海悬沙浓度/kg•m-3河口潮差/m三角洲面积/km2参考文献
    长江18×1056 3809534.8×10819700.542.740 000[51]
    珠江4.3×1052 2143020.8×10819870.220.9~1.68 600[13]
    红河1.6×1051 2001201.3×10819951.082.0~2.610 300[10]
    湄公河8×1054 6204701.6×10819930.343.2~4.093 781[39]
    恒河16×1052 51055010×10819921.813.4~3.8[14]
    下载: 导出CSV
  • [1]

    Gilbert G. The topographic features of lake shores [J]. Nature, 1886, 34(873): 269-270. doi: 10.1038/034269a0

    [2]

    Barrell J. Criteria for the recognition of ancient delta deposits [J]. GSA Bulletin, 1912, 23(1): 377-446. doi: 10.1130/GSAB-23-377

    [3]

    Scruton P C. Delta building and the deltaic sequence[M]//Shepard F P, Phleger F B, Van Andel T H. Recent Sediments Northwest Gulf of Mexico. Tulsa: American Association of Petroleum Geologists Symposium Volume, 1960: 82-102.

    [4]

    Coleman J M, Wright L D. Modern river delta: vari-ability of processes and sand bodies[M]//Broussard M L. Deltas: Models for Exploration. Houston, TX: Houston Geological Society, 1975: 99-149.

    [5]

    Galloway W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems[M]//Broussard M L. Deltas: Models for Exploration. Houston, TX: Houston Geological Society, 1975: 87-98.

    [6]

    Stanley D J, Warne A G. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise [J]. Science, 1994, 265(5169): 228-231. doi: 10.1126/science.265.5169.228

    [7]

    Hori K, Tanabe S, Saito Y, et al. Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) delta, Vietnam [J]. Sedimentary Geology, 2004, 164(3-4): 237-249. doi: 10.1016/j.sedgeo.2003.10.008

    [8]

    Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang (Yangtze) River in response to late Pleistocene-Holocene sea-level changes [J]. Journal of Sedimentary Research, 2002, 72(6): 884-897. doi: 10.1306/052002720884

    [9]

    Song B, Li Z, Saito Y, et al. Initiation of the Changjiang (Yangtze) delta and its response to the mid-Holocene sea level change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 81-97. doi: 10.1016/j.palaeo.2013.07.026

    [10]

    Tanabe S, Saito Y, Vu Q L, et al. Holocene evolution of the Song Hong (Red River) delta system, northern Vietnam [J]. Sedimentary Geology, 2006, 187(1-2): 29-61. doi: 10.1016/j.sedgeo.2005.12.004

    [11]

    Ta T K O, Nguyen V L, Tateishi M, et al. Holocene delta evolution and depositional models of the Mekong River Delta, southern Vietnam[M]//Giosan L, Bhattacharya J P. River Deltas—Concepts, Models, and Examples. Tulsa: SEPM Society for Sedimentary Geology, 2005: 453-466.

    [12]

    Li Y X, Törnqvist T E, Nevitt J M, et al. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago [J]. Earth and Planetary Science Letters, 2012, 315-316: 41-50. doi: 10.1016/j.jpgl.2011.05.034

    [13]

    Zong Y Q, Huang K Y, Yu F L, et al. The role of sea-level rise, monsoonal discharge and the Palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China [J]. Quaternary Science Reviews, 2012, 54: 77-88. doi: 10.1016/j.quascirev.2012.01.002

    [14]

    Goodbred Jr S L, Kuehl S A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta [J]. Sedimentary Geology, 2000, 133(3-4): 227-248. doi: 10.1016/S0037-0738(00)00041-5

    [15]

    Bard E, Hamelin B, Arnold M, et al. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge [J]. Nature, 1996, 382(6588): 241-244. doi: 10.1038/382241a0

    [16]

    Hanebuth T, Stattegger K, Grootes P M. Rapid flooding of the sunda shelf: a late-glacial sea-level record [J]. Science, 2000, 288(5468): 1033-1035. doi: 10.1126/science.288.5468.1033

    [17]

    Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity [J]. Science, 2000, 289(5486): 1897-1902. doi: 10.1126/science.289.5486.1897

    [18]

    Yokoyama Y, Lambeck K, De Deckker P, et al. Timing of the Last Glacial Maximum from observed sea-level minima [J]. Nature, 2000, 406(6797): 713-716. doi: 10.1038/35021035

    [19]

    Siddall M, Rohling E J, Almogi-Labin A, et al. Sea-level fluctuations during the last glacial cycle [J]. Nature, 2003, 423(6942): 853-858. doi: 10.1038/nature01690

    [20]

    Bassett S E, Milne G A, Mitrovica J X, et al. Ice sheet and solid earth influences on far-field sea-level histories [J]. Science, 2005, 309(5736): 925-928. doi: 10.1126/science.1111575

    [21]

    Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record [J]. Quaternary Science Reviews, 2006, 25(23-24): 3322-3337. doi: 10.1016/j.quascirev.2006.04.010

    [22]

    Bard E, Hamelin B, Fairbanks R G. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130, 00 years [J]. Nature, 1990, 346(6283): 456-458. doi: 10.1038/346456a0

    [23]

    Hori K, Saito Y. An early Holocene sea-level jump and delta initiation [J]. Geophysical Research Letters, 2007, 34(18): L18401. doi: 10.1029/2007GL031029

    [24]

    Reed D J. Sea-level rise and coastal marsh sustainability: geological and ecological factors in the Mississippi delta plain [J]. Geomorphology, 2002, 48(1-3): 233-243. doi: 10.1016/S0169-555X(02)00183-6

    [25]

    李高聪, 高抒, 高建华. 全新世以来亚洲七个主要河口三角洲的生长极限[J]. 海洋地质与第四纪地质, 2018, 38(1):11-22

    LI Gaocong, GAO Shu, GAO Jianhua. Modeling the growth limit of seven major Holocene river deltas in Asia [J]. Marine Geology & Quaternary Geology, 2018, 38(1): 11-22.

    [26]

    Coleman J M. Brahmaputra River: channel processes and sedimentation [J]. Sedimentary Geology, 1969, 3(2-3): 129-239. doi: 10.1016/0037-0738(69)90010-4

    [27]

    Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 2001, 249(5550): 2345-2348.

    [28]

    Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 2003, 300(5626): 1737-1739. doi: 10.1126/science.1083130

    [29]

    Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304(5670): 575-578. doi: 10.1126/science.1091220

    [30]

    Li C X, Chen Q Q, Zhang J Q, et al. Stratigraphy and paleoenvironmental changes in the Yangtze delta during the Late Quaternary [J]. Journal of Asian Earth Sciences, 2000, 18(4): 453-469. doi: 10.1016/S1367-9120(99)00078-4

    [31]

    Li C X, Wang P, Sun H P, et al. Late Quaternary incised-valley fill of the Yangtze delta (China): its stratigraphic framework and evolution [J]. Sedimentary Geology, 2002, 152(1-2): 133-158. doi: 10.1016/S0037-0738(02)00066-0

    [32]

    Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression [J]. Marine Geology, 2001, 177(3-4): 331-351. doi: 10.1016/S0025-3227(01)00165-7

    [33]

    Wang Z H, Zhuang C C, Saito Y, et al. Early mid-Holocene sea-level change and coastal environmental response on the southern Yangtze delta plain, China: implications for the rise of Neolithic culture [J]. Quaternary Science Reviews, 2012, 35: 51-62. doi: 10.1016/j.quascirev.2012.01.005

    [34]

    Wang Z H, Zhan Q, Long H Y, et al. Early to mid-Holocene rapid sea-level rise and coastal response on the southern Yangtze delta plain, China [J]. Journal of Quaternary Science, 2013, 28(7): 659-672. doi: 10.1002/jqs.2662

    [35]

    Zong Y, Huang G, Switzer A D, et al. An evolutionary model for the Holocene formation of the Pearl River delta, China [J]. The Holocene, 2009, 19(1): 129-142. doi: 10.1177/0959683608098957

    [36]

    Tanabe S, Hori K, Saito Y, et al. Sedimentary facies and radiocarbon dates of the Nam Dinh-1 core from the Song Hong (Red River) delta, Vietnam [J]. Journal of Asian Earth Sciences, 2003, 21(5): 503-513. doi: 10.1016/S1367-9120(02)00082-2

    [37]

    Nguyen V L, Ta T K O, Saito Y. Early Holocene initiation of the Mekong River delta, Vietnam, and the response to Holocene sea-level changes detected from DT1 core analyses [J]. Sedimentary Geology, 2010, 230(3-4): 146-155. doi: 10.1016/j.sedgeo.2010.07.006

    [38]

    Tamura T, Saito Y, Sieng S, et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland [J]. Quaternary Science Reviews, 2009, 28(3-4): 327-344. doi: 10.1016/j.quascirev.2008.10.010

    [39]

    Tjallingii R, Stattegger K, Wetzel A, et al. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise [J]. Quaternary Science Reviews, 2010, 29(11-12): 1432-1444. doi: 10.1016/j.quascirev.2010.02.022

    [40]

    李国刚, 胡邦琦, 毕建强, 等. 黄河三角洲ZK1孔晚第四纪以来沉积层序演化及其古环境意义[J]. 沉积学报, 2013, 31(6):1050-1058

    LI Guogang, HU Bangqi, BI Jianqiang, et al. Stratigraphic evolution of the Huanghe Delta (Bohai Sea) since the Late Quaternary and its Paleoenvironmental implications: evidence from core ZK1 [J]. Acta Sedimentologica Sinica, 2013, 31(6): 1050-1058.

    [41]

    成国栋, 薛春汀. 黄河三角洲沉积地质学[M]. 北京: 地质出版社, 1997.

    CHENG Guodong, XUE Chunting. Sedimentary Geology of the Yellow River Delta[M]. Beijing: Geology Press, 1997.

    [42]

    庄振业, 许卫东, 刘东生, 等. 渤海南部S3孔晚第四纪海相地层的划分及环境演变[J]. 海洋地质与第四纪地质, 1999, 19(2):27-35

    ZHUANG Zhenye, XU Weidong, LIU Dongsheng, et al. Division and environmental evolution of Late Quaternary marine beds of S3 hole in the Bohai Sea [J]. Marine Geology & Quaternary Geology, 1999, 19(2): 27-35.

    [43]

    阎玉忠, 王宏, 李凤林, 等. 渤海湾西岸BQ1孔揭示的沉积环境与海面波动[J]. 地质通报, 2006, 25(3):357-382 doi: 10.3969/j.issn.1671-2552.2006.03.006

    YAN Yuzhong, WANG Hong, LI Fenglin, et al. Sedimentary environment and sea-level fluctuations revealed by borehole BQ1 on the west coast of the Bohai Bay, China [J]. Geological Bulletin of China, 2006, 25(3): 357-382. doi: 10.3969/j.issn.1671-2552.2006.03.006

    [44]

    Liu J, Saito Y, Wang H, et al. Stratigraphic development during the Late Pleistocene and Holocene offshore of the Yellow River delta, Bohai Sea [J]. Journal of Asian Earth Sciences, 2009, 36(4-5): 318-331. doi: 10.1016/j.jseaes.2009.06.007

    [45]

    庞家珍, 司书亨. 黄河河口演变 I. 近代历史变迁[J]. 海洋与湖沼, 1979, 10(2):136-141

    PANG Jiazhen, SI Shuheng. The estuary changes of Huanghe River I. Changes in modern time [J]. Oceanologia et Limnologia Sinica, 1979, 10(2): 136-141.

    [46]

    Wang Z H, Saito Y, Zhan Q, et al. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: impacts of sea level, climate and human activity [J]. Earth-Science Reviews, 2018, 185: 938-955. doi: 10.1016/j.earscirev.2018.08.012

    [47]

    Tamura T, Saito Y, Nguyen V L, et al. Origin and evolution of inter distributary delta plains; insights from Mekong River delta [J]. Geology, 2012, 40(4): 303-306. doi: 10.1130/G32717.1

    [48]

    Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene series/epoch: a discussion paper by a working group of intimate (integration of ice-core, marine and terrestrial records) and the subcommission on quaternary stratigraphy (international commission on stratigraphy) [J]. Journal of Quaternary Science, 2012, 27(7): 649-659. doi: 10.1002/jqs.2565

    [49]

    Bridge J S. Fluvial facies models: recent developments[M]//Posamentier H W, Walker R. Facies Models Revisited. Tulsa: SEPM, 2006: 85-170.

    [50]

    王张华, Liu J P, 赵宝成. 全新世长江泥沙堆积的时空分布及通量估算[J]. 古地理学报, 2007, 9(4):419-429 doi: 10.3969/j.issn.1671-1505.2007.04.008

    WANG Zhanghua, Liu J P, ZHAO Baocheng. Spatial and temporal distribution of Changjiang sediments and estimation of sediment budget during the Holocene [J]. Journal of Palaeogeography, 2007, 9(4): 419-429. doi: 10.3969/j.issn.1671-1505.2007.04.008

    [51]

    陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988: 205.

    CHEN Jiyu, SHEN Huanting, YUN Caixing, et al. Process of Dynamics and Geomorphology of the Changjiang Estuary[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1988: 205.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  3128
  • PDF下载数:  164
  • 施引文献:  0
出版历程
收稿日期:  2019-01-29
修回日期:  2019-03-07
刊出日期:  2020-02-25

目录