In-situ microanalysis of elemental ratios in a single oyster shell from the South Yellow Sea, China and its environmental implications
-
摘要:
碳酸盐生物壳体的周期性生长纹层是记录气候环境变化的天然材料。随着原位微区测试技术的快速发展,高分辨率的同位素和化学元素组成的快速分析显著推动了古气候环境变化及生物地球化学研究。应用激光剥蚀等离子体质谱仪(LA-ICP-MS)对南黄海现代牡蛎Crassostrea gigas壳体韧带部的元素组成进行原位微区测试,利用内标元素43Ca进行元素比值的校正,探讨了牡蛎壳中化学元素特征及其环境意义。研究的长牡蛎壳体中Mg/Ca、Sr/Ca、Na/Ca比值具有显著的季节性周期变化。环境水体物理化学性质的变化对壳体生长速率影响较大,壳中白垩质方解石和叶片方解石生长层分别对应较高和较低的环境温度,白垩方解石层具有较高的Mg/Ca、Sr/Ca和较低的Na/Ca比值。Mg/Ca比值可指示牡蛎壳体生长环境水体温度,利用前人Mg/Ca比值公式计算可以恢复与器测资料相符的近岸海水温度结果。本研究对应用LA-ICP-MS分析技术开展高分辨率的生物壳体元素组成和环境示踪研究具有借鉴意义。
Abstract:Biogenic calcium carbonates are widely used natural archives to study environmental history and human activities as they preserve a wealth of information of climatic and environmental changes. With the NIST610 glass as the reference material and 43Ca as the internal element to calibrate, major and trace elements in a modern Pacific Oyster shell (Crassostrea gigas) taken from the offshore area of South Yellow Sea near Haimen were measured with laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). The primary objecitve is to reveal elemental compositions and environmental implications. Our results show very good correlations between the variations in Mg/Ca, Sr/Ca, Na/Ca ratios and the seasonal growth increments of the shell. This might suggest that variations in elemental ratios of the shell are mainly controlled by physical and chemical properties of the ambient sea water. In most cases, the chalky calcite layers in oyster shells correspond to the period of higher sea water temperature, while the foliated calcite layers are associated with the period of lower temperature. In general, the chalky calcite layers are featured by high Mg/Ca and Sr/Ca and low Na/Ca ratios. By applying Mg/Ca-temperature reconstruction equation published in literature, we obtained reliable sea surface temperature for the study area based on Mg/Ca ratios in the oyster shell, which is supported by the overall consistence between gauged water temperatures and the reconstructed.
-
Key words:
- oyster shell /
- Crassostrea gigas /
- trace element /
- LA-ICP-MS /
- Mg/Ca /
- temperature
-
[1] Perkins W T, Fuge R, Pearce N J G. Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry [J]. Journal of Analytical Atomic Spectrometry, 1991, 6(6): 445-449. doi: 10.1039/ja9910600445
[2] Marali S, Schöne B R, Mertz-Kraus R, et al. Reproducibility of trace element time-series (Na/Ca, Mg/Ca, Mn/Ca, Sr/Ca, and Ba/Ca) within and between specimens of the bivalve Arctica islandica - A LA-ICP-MS line scan study [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484: 109-128. doi: 10.1016/j.palaeo.2016.11.024
[3] Müller W, Fietzke J. The role of LA-ICP-MS in palaeoclimate research [J]. Elements, 2016, 12(5): 329-334. doi: 10.2113/gselements.12.5.329
[4] Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS [J]. Chemical Geology, 2012, 318-319: 31-44. doi: 10.1016/j.chemgeo.2012.05.009
[5] Schöne B R, Zhang Z J, Radermacher P, et al. Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 302(1-2): 52-64. doi: 10.1016/j.palaeo.2010.03.016
[6] Elliot M, Welsh K, Chilcott C, et al. Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: potential applications in paleoclimate studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1-2): 132-142. doi: 10.1016/j.palaeo.2009.06.007
[7] Rosenthal Y, Katz A. The applicability of trace elements in freshwater shells for paleogeochemical studies [J]. Chemical Geology, 1989, 78(1): 65-76. doi: 10.1016/0009-2541(89)90052-1
[8] Carriker M R, Swann C P, Ewart J, et al. Ontogenetic trends of elements (Na to Sr) in prismatic shell of living Crassostrea virginica (Gmelin) grown in three ecologically dissimilar habitats for 28 weeks: a proton probe study [J]. Journal of Experimental Marine Biology and Ecology, 1996, 201(1-2): 87-135. doi: 10.1016/0022-0981(96)00013-5
[9] Putten E V, Dehairs F, Keppens E, et al. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls [J]. Geochimica et Cosmochimica Acta, 2000, 64(6): 997-1011. doi: 10.1016/S0016-7037(99)00380-4
[10] Freitas P S, Clarke L J, Kennedy H, et al. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia) shell calcite precipitated at constant temperature [J]. Biogeosciences, 2009, 6(7): 1209-1227. doi: 10.5194/bg-6-1209-2009
[11] Bougeois L, de Rafélis M, Reichart G J, et al. A high resolution study of trace elements and stable isotopes in oyster shells to estimate Central Asian Middle Eocene seasonality [J]. Chemical Geology, 2014, 363: 200-212. doi: 10.1016/j.chemgeo.2013.10.037
[12] Bougeois L, de Rafélis M, Reichart G J, et al. Mg/Ca in fossil oyster shells as palaeotemperature proxy, an example from the Palaeogene of Central Asia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 611-626. doi: 10.1016/j.palaeo.2015.09.052
[13] Mouchi V, de Rafélis M, Lartaud F, et al. Chemical labelling of oyster shells used for time-calibrated high-resolution Mg/Ca ratios: a tool for estimation of past seasonal temperature variations [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 373: 66-74. doi: 10.1016/j.palaeo.2012.05.023
[14] Surge D, Lohmann K C. Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica [J]. Journal of Geophysical Research, 2008, 113(G2): G02001.
[15] Tynan S, Opdyke B N, Walczak M, et al. Assessment of Mg/Ca in Saccostrea glomerata (the Sydney rock oyster) shell as a potential temperature record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 484: 79-88. doi: 10.1016/j.palaeo.2016.08.009
[16] Warter V, Müller W. Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS analysis - a novel methodological approach towards improved sclerochemistry [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 465: 362-375. doi: 10.1016/j.palaeo.2016.03.019
[17] Sano Y, Kobayashi S, Shirai K, et al. Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells [J]. Nature Communications, 2012, 3(1): 761. doi: 10.1038/ncomms1763
[18] Dodd J R, Crisp E L. Non-linear variation with salinity of Sr/Ca and Mg/Ca ratios in water and aragonitic bivalve shells and implications for paleosalinity studies [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 38(1-2): 45-56. doi: 10.1016/0031-0182(82)90063-3
[19] Ullmann C V, Böhm F, Rickaby R E M, et al. The giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4109-4120. doi: 10.1002/ggge.20257
[20] Lerman A. Strontium and magnesium in water and in Crassostrea Calcite [J]. Science, 1965, 150(3697): 745-751. doi: 10.1126/science.150.3697.745
[21] Immega N T. Environmental influences on trace element concentrations in some modern and fossil oysters[D]. Doctor Dissertation of Indiana University, 1976.
[22] Rucker J B, Valentine J W. Salinity response of trace element concentration in Crassostrea virginica [J]. Nature, 1961, 190(4781): 1099-1100. doi: 10.1038/1901099a0
[23] Higuera-Ruiz R, Elorza J. Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences [J]. Estuarine, Coastal and Shelf Science, 2009, 82(2): 201-213. doi: 10.1016/j.ecss.2009.01.001
[24] Zhao L Q, Schöne B R, Mertz-Kraus R. Delineating the role of calcium in shell formation and elemental composition of Corbicula fluminea (Bivalvia) [J]. Hydrobiologia, 2017, 790(1): 259-272. doi: 10.1007/s10750-016-3037-7
[25] Kent B W. Making Dead Oysters Talk: Techniques for Analyzing Oysters from Archaeological Sites[M]. Crownsville: Maryland Historical & Cultural Publications, 1992.
[26] Kirby M X, Soniat T M, Spero H J. Stable Isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica) [J]. Palaios, 1998, 13(6): 560-569. doi: 10.2307/3515347
[27] Lartaud F, de Rafelis M, Ropert M, et al. Mn labelling of living oysters: artificial and natural cathodoluminescence analyses as a tool for age and growth rate determination of C. gigas (Thunberg, 1793) Shells [J]. Aquaculture, 2010, 300(1-4): 206-217. doi: 10.1016/j.aquaculture.2009.12.018
[28] 范昌福, 王宏, 裴艳东, 等. 牡蛎壳体的同位素贝壳年轮研究[J]. 地球科学进展, 2010, 25(2):163-173
FAN Changfu, WANG Hong, PEI Yandong, et al. Stable isotope sclerochronology study of oyster shells [J]. Advances in Earth Science, 2010, 25(2): 163-173.
[29] 徐凤山, 张素萍, 王少青. 中国海产双壳类图志[M]. 北京: 科学出版社, 2008.
XU Fengshan, ZHANG Suping, WANG Shaoqing. An Illustrated Bivalvia Mollusca Fauna of China Seas[M]. Beijing: China Ocean Press, 2008.
[30] 王建, 赵梅, 白世彪, 等. 黄海南部海门近岸牡蛎礁发育的物质基础与环境背景[J]. 地理研究, 2009, 28(5):1170-1178 doi: 10.3321/j.issn:1000-0585.2009.05.003
WANG Jian, ZHAO Mei, BAI Shibiao, et al. Environmental background of oyster reef development in near-shore Haimen of southern Yellow Sea [J]. Geographical Research, 2009, 28(5): 1170-1178. doi: 10.3321/j.issn:1000-0585.2009.05.003
[31] Wang H, Van Strydonck M. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China [J]. Quaternary Research, 1997, 47(2): 192-205. doi: 10.1006/qres.1996.1865
[32] Kirby M X. Paleoecological differences between Tertiary and Quaternary Crassostrea Oysters, as revealed by stable isotope sclerochronology [J]. Palaios, 2000, 15(2): 132-141. doi: 10.1669/0883-1351(2000)015<0132:PDBTAQ>2.0.CO;2
[33] 张忍顺, 王艳红, 张正龙, 等. 江苏小庙洪牡蛎礁的地貌特征及演化[J]. 海洋与湖沼, 2007, 38(3):259-265 doi: 10.3321/j.issn:0029-814X.2007.03.012
ZHANG Renshun, WANG Yanhong, ZHANG Zhenglong, et al. Geomorphology and evolution of the Xiaomiaohong oyster reef off Jiangsu Coast, China [J]. Oceanologia et Limnologia Sinica, 2007, 38(3): 259-265. doi: 10.3321/j.issn:0029-814X.2007.03.012
[34] 宋召军, 黄海军, 杜廷芹, 等. 南黄海辐射沙洲附近海域悬浮体的研究[J]. 海洋地质与第四纪地质, 2006, 26(6):19-25
SONG Zhaojun, HUANG Haijun, DU Tingqin, et al. Suspended sediment near radial sand ridge area in the South Yellow Sea [J]. Marine Geology & Quaternary Geology, 2006, 26(6): 19-25.
[35] 任美锷. 江苏省海岸带和海涂资源综合调查[M]. 北京: 科学出版社, 1986: 19-44.
REN Mei'e. Comprehensive Investigation of Coastal Zone and Tidal Flat Resources, Jiangsu Province[M]. Beijing: China Ocean Press, 1986: 19-44.
[36] Harding J M, Mann R. Age and growth of wild Suminoe (Crassostrea ariakensis, fugita 1913) and Pacific (C. gigas, Thunberg 1793) oysters from Laizhou bay, China [J]. Journal of Shellfish Research, 2015, 25(1): 73-82.
[37] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(32):3863-3878 doi: 10.1007/s11434-013-5901-4
LIU Yongsheng, HU Zhaochu, LI Ming, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples [J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4
[38] Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation [J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899-904. doi: 10.1039/JA9961100899
[39] 徐金龙, 刘中勇, 华斌, 等. 分析化学中检出限问题探讨[J]. 检验检疫学刊, 2012, 22(6):74-76
XU Jinlong, LIU Zhongyong, HUA Bin, et al. Discussion of detection limit concept question in analytical chemistry [J]. Journal of Inspection and Quarantine, 2012, 22(6): 74-76.
[40] 陈璐. 碳酸岩样品微量元素LA-ICP-MS微区原位准确分析方法研究[D]. 中国地质大学硕士学位论文, 2011.
CHEN Lu. In situ accurate analysis of trace elements of carbonate by LA-ICP-MS[D]. Master Dissertation of China University of Geosciences, 2011.
[41] Morse J W, Mackenzie F T. Geochemistry of Sedimentary Carbonates[M]. New York: Elsevier Science Publishers Company, 1990.
[42] Yoshimura T, Tamenori Y, Suzuki A, et al. Altervalent substitution of sodium for calcium in biogenic calcite and aragonite [J]. Geochimica et Cosmochimica Acta, 2017, 202: 21-38. doi: 10.1016/j.gca.2016.12.003
[43] Almeida M J, Machado J, Moura G, et al. Temporal and local variations in biochemical composition of Crassostrea gigas shells [J]. Journal of Sea Research, 1998, 40(3-4): 233-249. doi: 10.1016/S1385-1101(98)00033-1
[44] Ohde S, Kitano Y. Coprecipitation of strontium with marine Ca-Mg carbonates [J]. Geochemical journal, 1984, 18(3): 143-146. doi: 10.2343/geochemj.18.143
[45] Durham S R, Gillikin D P, Goodwin D H, et al. Rapid determination of oyster lifespans and growth rates using LA-ICP-MS line scans of shell Mg/Ca ratios [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 201-209. doi: 10.1016/j.palaeo.2017.06.013
[46] 刘文, 李天华, 张滕军, 等. 牡蛎壳中钙的改性及吸附特性的研究[J]. 材料导报, 2012, 26(18):88-92 doi: 10.3969/j.issn.1005-023X.2012.18.024
LIU Wen, LI Tianhua, ZHANG Tengjun, et al. Study on modification of calcium and adsorbability of oyster shells [J]. Materials Review, 2012, 26(18): 88-92. doi: 10.3969/j.issn.1005-023X.2012.18.024
[47] 余克服, 赵焕庭, 朱袁智. 南沙群岛永暑礁等8座环礁现代沉积物中Ca、Sr、Mg的特征[J]. 海洋通报, 1996, 15(3):54-63
YU Kefu, ZHAO Huanting, ZHU Yuanzhi. Content characters about Ca, Sr and Mg in modern sediments from eight atolls of Nansha Islands [J]. Marine Science Bulletin, 1996, 15(3): 54-63.
[48] Mucci A. Influence of temperature on the composition of magnesian calcite overgrowths precipitated from seawater [J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1977-1984. doi: 10.1016/0016-7037(87)90186-4