Characteristics of rare earth elements in deep-water sediments in Mariana “Trench-Basin” system and their provenance constraints
-
摘要:
通过对西太平洋帕里西维拉海盆东南部的C-P19柱状样和马里亚纳海沟南坡的L3柱状样进行粒度和稀土元素地球化学分析,探讨了二者物源的异同。结果表明:研究区沉积物的稀土元素含量基本不受沉积物粒度控制,主要受控于物源变化。物源判别结果指示二者的物源具有同源性,其中西马里亚纳海脊剥蚀下来的火山物质对研究区的物质来源贡献最大。火山物质中的重矿物可以影响到稀土元素的含量,例如锆石的含量和稀土元素总量(∑REY)的相关系数可达0.86。来自中国内陆黄土的陆源风尘物质对两个研究区的物源供给也有一定贡献,但其贡献程度较小。由于马里亚纳海沟南坡更加远离大陆且纬度更低,其接受的亚洲风尘也比帕里西维拉海盆和挑战者深渊更少。此外,南极底层水流经研究区,对海盆和海沟的沉积物都造成一定影响,而且在马里亚纳海沟南坡更加活跃,因而帕里西维拉海盆东南部的沉积物比马里亚纳海沟南坡更易于保存。
Abstract:Based on the grain size and rare earth elements (REE) geochemical data of the core C-P19 from the southeastern Parece Vela Basin and the core L3 from the south slope of the Mariana Trench in the western Pacific Ocean, we summarized and discussed in this paper both the similarities and differences in provenances between the sediments in the two places. Our study suggests that no obvious correlation between REE content and grain size of the sediments is observed in the study area, and the composition and distribution patterns of the rare earth elements are mainly constrained by provenance. The provenance discrimination results reveal that the sediments in the Parece Vela Basin and on the south slope of the Mariana Trench are homologous, and contributed mainly by the volcanic materials eroded from the western Mariana Ridge. Heavy minerals in volcanic materials may affect the content of rare earth elements. For example, the correlation coefficient between the content of zircon and the ∑REY is as high as 0.86. The terrigenous eolian dusts of loess from Chinese inland also contribute some to the sediment of the study area, but is not substantially. Since the south slope of the Mariana Trench is far away from the mainland and located in lower latitude, it receives little Asian dust comparing to the Parece Vela Basin and Challenger Deep. In addition, the Antarctic Bottom Water passing through the study area has certain impact on the sediments of the basin and trench, and is more active in the south slope of Mariana Trench. Therefore, the sediment deposited in the southeastern Parece Vela Basin is relatively easier to be preserved than that on the south slope of Mariana Trench.
-
表 1 L3和C-P19柱状样的粒度参数
Table 1. Grain size parameters of the cores L3 and C-P19
样品 深度 平均粒径/μm 分选系数 偏度 峰态 砂/% 粉砂/% 黏土/% L3柱状样 表层(0 cm) 14.68 2.40 −1.34 3.00 22.23 55.88 21.89 上层(45~50 cm) 12.11 1.49 1.01 2.01 5.21 82.68 12.11 中层(102~106 cm) 14.19 1.49 0.69 1.99 8.62 82.27 9.12 下层(163~167 cm) 12.53 1.50 −0.54 2.03 6.78 82.20 11.01 平均值 13.38 1.72 −0.05 2.26 10.71 75.76 13.53 C-P19柱状样 最小值 5.32 1.11 −0.46 0.74 0 40.66 4.95 最大值 86.76 2.89 0.14 1.39 53.05 87.88 37.34 平均值 19.97 1.62 −0.29 1.11 14.88 73.06 12.06 表 2 C-P19和L3柱状样沉积物中主要重矿物类型及所占比例(%)
Table 2. Types of heavy minerals and their proportions in the sediments of core L3 and C-P19(%)
矿物类型 C-P19柱状样 L3柱状样 上 中 下 表 上 中 下 磁铁矿 20 44.33 16.67 4.02 3.44 4.46 钛铁矿 3.64 11.34 8.89 2.89 2.87 2.19 17.83 赤、褐铁矿 4.12 5.20 19.54 17.81 21.66 锆石 20 2.06 4.44 0.87 0.57 1.25 0.96 榍石 0.32 磷灰石 0.31 金红石 0.58 0.96 电气石 1.82 1.03 1.45 1.15 石榴石 0.58 0.57 斜方辉石 10.91 3.09 27.78 4.05 8.05 4.69 0.96 单斜辉石 16.18 26.72 12.19 2.23 普通角闪石 9.09 6.19 6.67 5.20 4.60 1.25 1.59 阳起透闪石 1.45 0.57 0.32 绿帘石 9.09 14.43 14.44 5.49 6.32 4.06 1.59 (斜)黝帘石 0.29 黑云母 1.11 白云母 1.82 2.06 0.58 1.25 自生黄铁矿 2.19 0.32 碳酸盐 3.76 2.87 0.96 水云母 1.25 岩屑 23.64 11.34 20 51.73 21.84 47.81 45.86 重晶石 0.31 表 3 C-P19和L3柱状样沉积物稀土元素含量(μg/g)及特征参数
Table 3. REE contents(μg/g)and characteristic parameters of the core C-P19 and L3
深度/cm La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REY ∑LREE/
∑HREEδEu δCe (La/sm)N (La/Yb)N (Sm/Yb)N C-P19 4 22.86 32.84 5.90 25.04 5.69 1.47 5.59 0.94 6.13 1.18 3.02 0.47 2.72 0.43 32.87 147.15 6.21 1.14 0.62 0.72 0.81 1.14 12 25.61 37.75 6.57 27.88 6.28 1.60 6.24 1.04 6.94 1.29 3.38 0.53 3.00 0.49 37.38 165.98 6.27 1.13 0.63 0.73 0.83 1.14 22 28.76 41.18 7.43 31.45 7.02 1.84 7.22 1.19 7.94 1.49 3.81 0.59 3.46 0.54 40.87 184.79 6.10 1.14 0.61 0.73 0.81 1.10 32 44.03 64.69 11.61 49.07 11.33 2.91 11.23 1.86 12.38 2.31 6.07 0.94 5.43 0.85 61.28 285.99 6.05 1.13 0.62 0.69 0.79 1.14 42 45.33 64.25 11.99 50.24 11.78 3.04 11.58 1.93 12.67 2.33 6.14 0.96 5.57 0.85 63.8 292.46 6.02 1.14 0.60 0.69 0.79 1.15 52 33.86 50.91 8.75 36.47 8.20 2.08 8.02 1.34 8.72 1.61 4.22 0.64 3.77 0.58 43.38 212.55 6.65 1.12 0.64 0.74 0.87 1.18 62 35.12 53.33 9.09 37.96 8.51 2.19 8.34 1.38 9.07 1.67 4.35 0.68 3.93 0.60 45.98 222.20 6.68 1.14 0.65 0.74 0.87 1.18 82 50.68 69.61 13.04 55.60 12.81 3.31 12.91 2.11 14.12 2.64 6.89 1.05 6.27 0.98 70.08 322.10 5.91 1.13 0.59 0.70 0.78 1.11 104 44.79 63.97 11.63 48.57 11.10 2.82 11.01 1.83 12.08 2.22 5.76 0.89 5.23 0.80 59 281.70 6.26 1.12 0.61 0.72 0.83 1.15 124 52.67 72.03 13.55 57.26 13.06 3.29 13.18 2.22 14.62 2.77 7.31 1.12 6.62 1.02 72.87 333.59 5.84 1.10 0.59 0.72 0.77 1.07 144 49.86 71.61 12.34 51.72 11.90 3.00 11.89 1.95 13.19 2.44 6.55 1.02 5.96 0.93 67.96 312.32 6.16 1.11 0.63 0.75 0.81 1.09 164 55.18 73.29 13.51 57.72 13.03 3.30 13.27 2.18 14.76 2.74 7.31 1.11 6.70 1.02 75.27 340.39 5.93 1.10 0.58 0.75 0.80 1.06 184 54.92 74.60 13.37 56.69 12.88 3.27 12.97 2.15 14.80 2.81 7.55 1.16 6.92 1.06 77.14 342.29 5.82 1.11 0.60 0.76 0.77 1.01 206 52.24 74.37 13.03 54.29 12.32 3.16 12.29 2.05 13.39 2.58 6.83 1.06 6.32 0.96 68.52 323.41 6.23 1.13 0.62 0.76 0.80 1.06 226 37.47 53.26 9.23 38.45 8.65 2.14 8.47 1.37 9.13 1.66 4.47 0.68 4.07 0.60 45.82 225.47 6.72 1.10 0.62 0.77 0.89 1.16 244 51.09 76.51 12.51 52.41 11.88 3.07 11.66 1.93 12.72 2.34 6.34 0.98 5.79 0.87 62.42 312.52 6.63 1.14 0.66 0.77 0.85 1.12 264 52.80 79.24 13.12 54.65 12.51 3.12 12.34 2.04 13.37 2.41 6.45 1.00 5.97 0.91 65.95 325.88 6.64 1.10 0.66 0.75 0.86 1.14 284 51.23 77.78 12.63 52.28 11.85 3.04 11.54 1.92 12.78 2.36 6.38 0.99 5.96 0.90 63.5 315.14 6.60 1.14 0.67 0.77 0.83 1.08 304 49.64 79.23 12.23 50.96 11.43 2.83 11.01 1.81 11.91 2.17 5.65 0.90 5.33 0.81 58.46 304.37 7.17 1.11 0.70 0.77 0.90 1.16 324 51.59 84.12 12.47 51.20 11.22 2.85 10.77 1.76 11.49 2.11 5.67 0.87 5.21 0.78 57.32 309.43 7.63 1.14 0.72 0.82 0.96 1.17 334 51.26 79.98 12.37 50.30 11.07 2.80 10.44 1.71 11.34 2.04 5.49 0.83 5.04 0.76 56.95 302.38 7.61 1.14 0.69 0.83 0.99 1.19 344 51.74 77.81 12.27 50.40 11.00 2.90 10.61 1.72 11.49 2.10 5.66 0.86 5.18 0.79 59.11 303.64 7.37 1.18 0.67 0.84 0.97 1.15 354 51.28 77.86 12.29 50.87 11.15 2.91 10.71 1.75 11.58 2.14 5.57 0.87 5.30 0.79 57.03 302.10 7.32 1.17 0.68 0.82 0.94 1.14 364 49.19 72.76 11.90 49.18 10.83 2.82 10.47 1.72 11.37 2.02 5.46 0.84 5.08 0.76 59.72 294.12 7.17 1.16 0.66 0.81 0.94 1.16 374 48.58 73.91 11.82 49.77 10.95 2.84 10.70 1.75 11.53 2.18 5.73 0.90 5.40 0.81 57.45 294.32 6.93 1.15 0.67 0.79 0.87 1.10 L3 0 69.1 62.9 19.0 82.9 19.7 5.00 20.6 3.38 18.9 4.27 11.1 1.66 10.1 1.55 121.56 451.61 4.92 1.09 0.38 0.63 0.66 1.06 50 49.2 61.1 13.3 56.3 13.2 3.54 13.6 2.22 12.4 2.71 7.05 1.05 6.41 0.99 74.58 317.52 5.88 1.16 0.52 0.67 0.74 1.12 106 44.1 51.4 11.9 51.6 12.2 3.15 12.6 2.06 11.4 2.53 6.72 1.01 6.07 0.94 68.17 285.85 5.55 1.12 0.49 0.65 0.70 1.09 167 41.7 55.5 11.0 47.1 11.1 2.87 11.2 1.83 9.99 2.19 5.77 0.873 5.14 0.80 59.51 266.67 6.27 1.13 0.56 0.67 0.79 1.17 表 4 帕里西维拉海盆和马里亚纳海沟物源判别函数值(DF)
Table 4. DF value of provenance discrimination function in the Parece Vela Basin and the Mariana Trench
样品类型 火山源 陆源 九州-帕劳海脊
凝灰岩马里亚纳海槽
玄武岩西马里亚纳海脊
凝灰岩帕里西维拉海盆
凝灰岩中国黄土 C-P19柱状样 0.09 0.11 0.03 0.12 0.37 L3柱状样 0.08 0.12 0.02 0.14 0.44 JL7KGC01A柱状样 0.10 0.09 0.04 0.11 0.38 CD-1柱状样 0.10 0.10 0.04 0.11 0.43 GC3柱状样 0.04 0.19 0.05 0.21 0.39 GC4柱状样 0.04 0.18 0.04 0.19 0.38 GC5柱状样 0.03 0.19 0.05 0.20 0.39 BC11柱状样 0.07 0.15 0.04 0.17 0.39 马里亚纳海沟挑战者深渊上方
水体中的沉降颗粒物0.09 0.12 0.05 0.13 0.35 东菲律宾海深海黏土 0.07 0.02 0.12 0.33 注:计算所用Lu/Yb和Sm/Nd数据分别来自于:九州−帕劳海脊、西马里亚纳海脊和帕里西维拉海盆凝灰岩数据源于文献[52];马里亚纳海槽玄武岩数据源于文献[53];中国黄土数据源于文献[54]。JL7KGC01A柱状样的DF值据文献[22]计算;CD-1柱状样的DF值据文献[28]计算;GC3、GC4、GC5和BC11柱状样的DF值据文献[39]计算;挑战者深渊下沉颗粒的DF值引自文献[17];东菲律宾海深海黏土DF值引自文献[19]。 -
[1] 金性春. 大洋钻探与西太平洋构造[J]. 地球科学进展, 1995, 10(3):234-239
JIN Xingchun. Ocean drilling program and tectonics of the Western Pacific region [J]. Advance in Earth Sciences, 1995, 10(3): 234-239.
[2] 秦蕴珊, 尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3):245-248
QIN Yunshan, YIN Hong. Western Pacific: The strategic priority in China deep sea research [J]. Advances in Earth Science, 2011, 26(3): 245-248.
[3] 宋晓晓, 李春峰. 西太平洋科学大洋钻探的地球动力学成果[J]. 热带海洋学报, 2016, 35(1):17-30 doi: 10.11978/2014121
SONG Xiaoxiao, LI Chunfeng. Geodynamic results of scientific ocean drilling in the western Pacific [J]. Journal of Tropical Oceanography, 2016, 35(1): 17-30. doi: 10.11978/2014121
[4] 张国良, 王帅, 张吉, 等. 西太平洋若干沟-弧-盆体系及板内岩浆成因研究进展[J]. 海洋与湖沼, 2017, 48(6):1220-1234
ZHANG Guoliang, WANG Shai, ZHANG Ji, et al. Proceedings of subduction system and intra-oceanic volcanism of the western Pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1220-1234.
[5] 朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 62(9):1340-1350 doi: 10.1007/s11430-018-9356-y
ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton [J]. Science China Earth Sciences, 2019, 62(9): 1340-1350. doi: 10.1007/s11430-018-9356-y
[6] 姜素华, 张雯, 李三忠, 等. 西北太平洋洋陆过渡带新生代盆地构造演化与油气分布特征[J]. 大地构造与成矿学, 2019, 43(4):839-857
JIANG Suhua, ZHANG Wen, LI Sanzhong, et al. Cenozoic oil-gas distribution and tectonic evolution of the basins in the Northwest Pacific continent-ocean connection zone [J]. Geotectonica et Metallogenia, 2019, 43(4): 839-857.
[7] 殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229
YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric geological developments and their geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 218-229.
[8] Andrews J E. Morphologic evidence for reorientation of sea-floor spreading in the West Philippine Basin [J]. Geology, 1980, 8(3): 140-143. doi: 10.1130/0091-7613(1980)8<140:MEFROS>2.0.CO;2
[9] 林美华, 李乃胜. 菲律宾海周边的深海沟地貌[J]. 海洋科学, 1998(6):29-31
LIN Meihua, LI Naisheng. The surrounding trench geomorphology of Philippine Sea [J]. Marine Sciences, 1998(6): 29-31.
[10] 林美华, 李乃胜. 西菲律宾海中央断裂带地貌学研究[J]. 海洋地质与第四纪地质, 1999, 19(1):39-44
LIN Meihua, LI Naisheng. Geomorphic study of the central rift zone in the west Philippine Sea [J]. Marine Geology & Quaternary Geology, 1999, 19(1): 39-44.
[11] 傅命佐, 刘乐军, 郑彦鹏, 等. 琉球“沟-弧-盆系”构造地貌: 地质地球物理探测与制图[J]. 科学通报, 2004, 49(14):1447-1460 doi: 10.3321/j.issn:0023-074X.2004.14.018
FU Mingzuo, LIU Lejun, ZHENG Yanpeng, et al. Structural geomorphology of “trench arc basin system” in Ryukyu: geological geophysical exploration and mapping [J]. Chinese Science Bulletin, 2004, 49(14): 1447-1460. doi: 10.3321/j.issn:0023-074X.2004.14.018
[12] 张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88
ZHANG Bin, LI Guangxue, HUANG Jifeng. The tectonic geomorphology of the Philippine Sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.
[13] 黄杰, 万世明, 张国良, 等. 海底地形特征对东菲律宾海表层黏土矿物分布的影响[J]. 海洋地质与第四纪地质, 2017, 37(1):77-85
HUANG Jie, WAN Shiming, ZHANG Guoliang, et al. Impact of seafloor topography on distribution of clay minerals in the east Philippines Sea [J]. Marine Geology & Quaternary Geology, 2017, 37(1): 77-85.
[14] 肖春晖, 王永红, 林间. 海沟沉积物研究进展[J]. 热带海洋学报, 2017, 36(6):27-38
XIAO Chunhui, WANG Yonghong, LIN Jian. Research progress on ocean trench sedimentation [J]. Journal of Tropical Oceanography, 2017, 36(6): 27-38.
[15] 林刚, 陈琳莹, 罗敏, 等. 西太平洋新不列颠海沟表层沉积物的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质, 2019, 39(3):12-27
LIN Gang, CHEN Linying, LUO Min, et al. The geochemical characteristics of the surface sediments in the New Britain Trench of the Western Pacific Ocean and their implications for provenance [J]. Marine Geology & Quaternary Geology, 2019, 39(3): 12-27.
[16] 谢一璇, 杨小强, 张伙带, 等. 西太平洋深海沉积物记录的~80 ka以来风尘物质输入与东亚冬季风强度[J]. 古地理学报, 2019, 21(5):855-868 doi: 10.7605/gdlxb.2019.05.058
XIE Yixuan, YANG Xiaoqiang, ZHANG Huodai, et al. Eolian input and East Asian winter monsoon records in deep-sea sediment from Western Pacific since ~80 ka [J]. Journal of Palaeogeography, 2019, 21(5): 855-868. doi: 10.7605/gdlxb.2019.05.058
[17] Xiao C H, Wang Y H, Tian J W, et al. Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: Implications for provenance and sedimentary environment [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157: 103211. doi: 10.1016/j.dsr.2019.103211
[18] 任建业, 李思田. 西太平洋边缘海盆地的扩张过程和动力学背景[J]. 地学前缘, 2000, 7(3):203-213 doi: 10.3321/j.issn:1005-2321.2000.03.019
REN Jianye, LI Sitian. Spreading and dynamic setting of marginal basins of the western Pacific [J]. Earth Science Frontiers, 2000, 7(3): 203-213. doi: 10.3321/j.issn:1005-2321.2000.03.019
[19] 徐兆凯, 李安春, 蒋富清, 等. 东菲律宾海沉积物的地球化学特征与物质来源[J]. 科学通报, 2008, 53(6):695-702 doi: 10.3321/j.issn:0023-074X.2008.06.013
XU Zhaokai, LI Anchun, JIANG Fuqing, et al. Geochemical characteristics and material sources of sediments in the East Philippine Sea [J]. Chinese Science Bulletin, 2008, 53(6): 695-702. doi: 10.3321/j.issn:0023-074X.2008.06.013
[20] 徐兆凯, 李铁刚, 李安春. 东菲律宾海表层沉积物来源的稀土证据[J]. 海洋地质与第四纪地质, 2013, 33(2):1-7
XU Zhaokai, LI Tiegang, LI Anchun. Provenance of surficial sediments of the east Philippine Sea: evidence from rare earth elements [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 1-7.
[21] Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements [J]. Nature Geoscience, 2011, 4(8): 535-539. doi: 10.1038/ngeo1185
[22] 王汾连, 何高文, 王海峰, 等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):67-75
WANG Fenlian, HE Gaowen, WANG Haifeng, et al. Geochemistry of rare earth elements in a core from Mariana Trench and its significance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
[23] 李景瑞, 刘升发, 冯秀丽, 等. 孟加拉湾中部表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):41-50
LI Jingrui, LIU Shengfa, FENG Xiuli, et al. Rare earth element geochemistry of surface sediments in mid-Bengal Bay and implications for provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 41-50.
[24] 杨宝菊, 吴永华, 刘季花, 等. 冲绳海槽表层沉积物元素地球化学及其对物源和热液活动的指示[J]. 海洋地质与第四纪地质, 2018, 38(2):25-37
YANG Baoju, WU Yonghua, LIU Jihua, et al. Elemental geochemistry of surface sediments in Okinawa Trough and its implications for provenance and hydrothermal activity [J]. Marine Geology & Quaternary Geology, 2018, 38(2): 25-37.
[25] Liu J G, Yan W, Xu W H, et al. Sediment provenance in the western Pacific warm pool from the last glacial maximum to the early Holocene: Implications for ocean circulation and climatic change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 55-63. doi: 10.1016/j.palaeo.2017.12.040
[26] 胡思谊, 曾志刚, 殷学博, 等. 冲绳海槽岩心沉积物稀土元素特征及物源指示[J]. 海洋地质与第四纪地质, 2019, 39(1):69-82
HU Siyi, ZENG Zhigang, YIN Xuebo, et al. Characteristics of rare earth elements in the sediment cores from the Okinawa Trough and their implications for sediment provenance [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 69-82.
[27] 石学法, 陈丽蓉. 西菲律宾海晚第四纪沉积地球化学特征[J]. 海洋与湖沼, 1995, 26(2):124-131 doi: 10.3321/j.issn:0029-814X.1995.02.002
SHI Xuefa, CHEN Lirong. Late Quaternary sedimentary geochemical characteristics of the west Philippines Sea [J]. Oceanologia Et Limnologia Sinica, 1995, 26(2): 124-131. doi: 10.3321/j.issn:0029-814X.1995.02.002
[28] Jiang Z Z, Sun Z L, Liu Z Q, et al. Rare-earth element geochemistry reveals the provenance of sediments on the southwestern margin of the Challenger Deep [J]. Journal of Oceanology and Limnology, 2019, 37(3): 998-1009. doi: 10.1007/s00343-019-8046-8
[29] 石学法, 陈丽蓉, 李坤业, 等. 西菲律宾海西部海域粘土沉积物的成因矿物学研究[J]. 海洋地质与第四纪地质, 1995, 15(2):61-72
SHI Xuefa, CHEN Lirong, LI Kunye, et al. Study on minerageny of the clay sediment in the west of Philippine Sea [J]. Marine Geology & Quaternary Geology, 1995, 15(2): 61-72.
[30] 臧绍先, 宁杰远. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, 2002, 45(2):188-197 doi: 10.3321/j.issn:0001-5733.2002.02.005
ZANG Shaoxian, NING Jieyuan. Interaction between Philippine Sea Plate (PH) and Eurasia (EU) Plate and its influence on the movement eastern Asia [J]. Chinese Journal of Geophysics, 2002, 45(2): 188-197. doi: 10.3321/j.issn:0001-5733.2002.02.005
[31] 靳宁. 帕里西维拉海盆西北部海域粘土矿物分布特征研究[D]. 青岛: 中国科学院海洋研究所, 2006.
JIN Ning. Clay mineral distribution in the sediments of the northwest Parece Vela Basin[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2006.
[32] 孙晗杰, 李铁刚, 孙荣涛, 等. 西菲律宾海第四纪钙质超微化石及微玻陨石地层学[J]. 科学通报, 2011, 56(21):1749-1755 doi: 10.1360/csb2011-56-21-1749
SUN Hanjie, LI Tiegang, SUN Rongtao, et al. Calcareous nannofossil bioevents and microtektite stratigraphy in the Western Philippine Sea during the Quaternary [J]. Chinese Science Bulletin, 2011, 56(21): 1749-1755. doi: 10.1360/csb2011-56-21-1749
[33] 明洁, 李安春, 孟庆勇, 等. 东菲律宾海帕里西维拉海盆第四纪黏土矿物组合特征及物源分析[J]. 海洋地质与第四纪地质, 2012, 32(4):139-148
MING Jie, LI Anchun, MENG Qingyong, et al. Quaternary assemblage characteristic and provenance of clay minerals in the Parece Vela Basin of the east Philippine Sea [J]. Marine Geology & Quaternary Geology, 2012, 32(4): 139-148.
[34] Wan S M, Yu Z J, Clift P D, et al. History of Asian eolian input to the West Philippine Sea over the last one million years [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 152-159. doi: 10.1016/j.palaeo.2012.02.015
[35] 周宇, 蒋富清, 徐兆凯, 等. 近2Ma帕里西-维拉海盆沉积物中碎屑组分粒度特征及其物源和古气候意义[J]. 海洋科学, 2015, 39(9):86-93 doi: 10.11759/hykx20140314001
ZHOU Yu, JIANG Fuqing, XU Zhaokai, et al. Grain-size distribution of detrital sediment in the Parece Vela Basin and its implication of provenance and palaeoclimate over the last 2 Ma [J]. Marine Sciences, 2015, 39(9): 86-93. doi: 10.11759/hykx20140314001
[36] Deng X G, Yi L, Paterson G A, et al. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene: potential constraints for Antarctic bottom water circulation [J]. International Geology Review, 2016, 58(1): 49-57. doi: 10.1080/00206814.2015.1055597
[37] Jiang F Q, Zhu X, Li T G, et al. Increased dust deposition in the Parece Vela Basin since the mid- Pleistocene inferred from radiogenic Sr and Nd isotopes [J]. Global and Planetary Change, 2019, 173: 83-95. doi: 10.1016/j.gloplacha.2018.12.011
[38] 王薇, 徐兆凯, 冯旭光, 等. 西菲律宾海现代风尘物质组成特征及其物源指示意义[J]. 地球科学, 2020, 45(2):559-568
WANG Wei, XU Zhaokai, FENG Xuguang, et al. Composition characteristics and provenance implication of modern dust in the west Philippine Sea [J]. Earth Science, 2020, 45(2): 559-568.
[39] Luo M, Algeo T J, Tong H P, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2018, 155: 70-82. doi: 10.1016/j.dsr2.2017.01.006
[40] 明洁. 东菲律宾海帕里西维拉海盆第四纪沉积特征和物质来源及其古环境意义[D]. 青岛: 中国科学院海洋研究所, 2013.
MING Jie. The characteristics and provenance of the sediment in the Parece Vela Basin since the Quaternary and their environmental implications[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2013.
[41] Haskin L A, Haskin M A, Frey F A, et al. Relative and absolute terrestrial abundances of the rare earths[M]//Origin and Distribution of the Elements. New York: Pergamon Press, 1968: 889-912.
[42] Bau M, Dulski P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, transvaal supergroup, South Africa [J]. Precambrian Research, 1996, 79(1-2): 37-55. doi: 10.1016/0301-9268(95)00087-9
[43] 刘宝林, 王亚平, 王吉中, 等. 南海北部陆坡海洋沉积物稀土元素及物源和成岩环境[J]. 海洋地质与第四纪地质, 2004, 24(4):17-23
LIU Baolin, WANG Yaping, WANG Jizhong, et al. Geochemical characters of REE in the seafloor sediment in northern continental slope of the South China Sea and analysis of source of material and diagenesis environment [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 17-23.
[44] Condie K C. Another look at rare earth elements in shales [J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531. doi: 10.1016/0016-7037(91)90370-K
[45] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell, 1985: 1-190.
[46] Yang S Y, Jung H S, Choi M S, et al. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments [J]. Earth and Planetary Science Letters, 2002, 201(2): 407-419. doi: 10.1016/S0012-821X(02)00715-X
[47] Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions [J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002
[48] 冯旭文, 石学法, 黄永祥, 等. 长江口东南泥质区百年来稀土元素的组成及控制因素[J]. 地球化学, 2011, 40(5):464-472
FENG Xuwen, SHI Xuefa, Huang Yongxiang, et al. Distributions and main controlling factors of rare earth elements in core sediments from the Changjiang Estuary mud area over the last 100 years [J]. Geochimica, 2011, 40(5): 464-472.
[49] 张现荣, 李军, 窦衍光, 等. 辽东湾东南部海域柱状沉积物稀土元素地球化学特征与物源识别[J]. 沉积学报, 2014, 32(4):684-691
ZHANG Xianrong, LI Jun, DOU Yanguang, et al. REE geochemical characteristics and provenance discrimination of core LDC30 in the southeastern part of Liaodong bay [J]. Acta Sedimentologica Sinica, 2014, 32(4): 684-691.
[50] 蓝先洪, 徐晓达, 王中波, 等. 渤海西部表层沉积物的稀土元素分布特征与物源约束[J]. 地球学报, 2018, 39(1):37-44 doi: 10.3975/cagsb.2017.111801
LAN Xianhong, XU Xiaoda, WANG Zhongbo, et al. Distribution characteristics of rare earth elements and their provenance constraints in the surface sediments from the Western Bohai Sea [J]. Acta Geoscientica Sinica, 2018, 39(1): 37-44. doi: 10.3975/cagsb.2017.111801
[51] 万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6):1208-1219
WAN Shiming, XU Zhaokai. Research progress on eolian dust records in the west Pacific [J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[52] Migdisov A A, Miklishansky A Z, Saveliev B V, et al. Neutron activation analysis of rare earth elements and some other trace elements in volcanic ashes and pelagic clays[C]//Deep Sea Drilling Project Leg 59. Washington: US Government Printing Office, 1981: 653-668.
[53] 田丽艳, 赵广涛, 陈佐林, 等. 马里亚纳海槽热液活动区玄武岩的岩石地球化学特征[J]. 中国海洋大学学报, 2003, 33(3):405-412
TIAN Liyan, ZHAO Guangtao, CHEN Zuolin, et al. The preliminary study of petrological geochemistry of basalts from hydrothermal activity regions, Mariana trough [J]. Journal of Ocean University of Qingdao, 2003, 33(3): 405-412.
[54] 文启忠, 刁桂仪, 耿安松, 等. 中国黄土地球化学[M]. 北京: 地质出版社, 1989: 1-285.
WEN Qizhong, DIAO Guiyi, GENG Ansong, et al. Loess geochemistry in China[M]. Beijing: Geological Publishing House, 1989: 1-285.
[55] Xiao C H, Wang Y H, Lin J. Constraints of magnetostratigraphic and mineralogical data on the provenance of sediments in the Parece Vela Basin of the western Pacific [J]. Journal of Asian Earth Sciences, 2020, 196: 104373. doi: 10.1016/j.jseaes.2020.104373
[56] Warren B A, Voorhis A D. Velocity measurements in the deep western boundary current of the South Pacific [J]. Nature, 1970, 228(5274): 849-850.
[57] Wunsch C, Hu D X, Grant B. Mass, heat, salt and nutrient fluxes in the South Pacific Ocean [J]. Journal of Physical Oceanography, 1983, 13(5): 725-753. doi: 10.1175/1520-0485(1983)013<0725:MHSANF>2.0.CO;2
[58] Taft B A, Hayes S P, Friederich G E, et al. Flow of abyssal water into the Samoa Passage [J]. Deep-Sea Research Part A-Oceanographic Research Papers, 1991, 38(Suppl. l): S103-S128.
[59] Tsimplis M N, Bacon S, Bryden H L. The circulation of the subtropical South Pacific derived from hydrographic data [J]. Journal of Geophysical Research, 1998, 103(C10): 21443-21468. doi: 10.1029/98JC01881
[60] Kato F, Kawabe M. Volume transport and distribution of deep circulation at 165°W in the North Pacific [J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2077-2087. doi: 10.1016/j.dsr.2009.08.004
[61] Zhai F G, Gu Y Z. Abyssal circulation in the Philippine Sea [J]. Journal of Ocean University of China, 2020, 19(2): 249-262. doi: 10.1007/s11802-020-4241-7
[62] Taylor B. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc[C]//Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX, USA, 1992, 126: 627-651.
[63] Lee I, Ogawa Y. Bottom-current deposits in the Miocene-Pliocene Misaki Formation, Izu forearc area, Japan [J]. The Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x
[64] Sverjensky D A. Europium redox equilibria in aqueous solution [J]. Earth and Planetary Science Letters, 1984, 67(1): 70-78. doi: 10.1016/0012-821X(84)90039-6
[65] Singh P, Rajamani V. REE geochemistry of recent clastic sediments from the Kaveri floodplains, Southern India: implication to source area weathering and sedimentary processes [J]. Geochimica et Cosmochimica Acta, 2001, 65(18): 3093-3108. doi: 10.1016/S0016-7037(01)00636-6
[66] 李双林, 李绍全. 黄海YA01孔沉积物稀土元素组成与源区示踪[J]. 海洋地质与第四纪地质, 2001, 21(3):51-56
LI Shuanglin, LI Shaoquan. REE composition and source tracing of sediments from core YA01 in Yellow Sea [J]. Marine Geology & Quaternary Geology, 2001, 21(3): 51-56.
[67] 邓义楠, 任江波, 郭庆军, 等. 太平洋西部富稀土深海沉积物的地球化学特征及其指示意义[J]. 岩石学报, 2018, 34(3):733-747
DENG Yinan, REN Jiangbo, GUO Qingjun, et al. Geochemistry characteristics of REY-rich sediment from deep sea in Western Pacific, and their indicative significance [J]. Acta Petrologica Sinica, 2018, 34(3): 733-747.
[68] Johnson G C. Quantifying Antarctic bottom water and north Atlantic deep water volumes [J]. Journal of Geophysical Research, 2008, 113(C5): C05027.