海底沉积物生物气演化特征及气源影响因素分析

刘煜, 李清, 林小云, 孔赟, 肖七林. 海底沉积物生物气演化特征及气源影响因素分析[J]. 海洋地质与第四纪地质, 2020, 40(6): 169-177. doi: 10.16562/j.cnki.0256-1492.2020081303
引用本文: 刘煜, 李清, 林小云, 孔赟, 肖七林. 海底沉积物生物气演化特征及气源影响因素分析[J]. 海洋地质与第四纪地质, 2020, 40(6): 169-177. doi: 10.16562/j.cnki.0256-1492.2020081303
LIU Yu, LI Qing, LIN Xiaoyun, KONG Yun, XIAO Qilin. Evolution characteristics of biogas in seabed sediments and their influencing factors on gas sources[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 169-177. doi: 10.16562/j.cnki.0256-1492.2020081303
Citation: LIU Yu, LI Qing, LIN Xiaoyun, KONG Yun, XIAO Qilin. Evolution characteristics of biogas in seabed sediments and their influencing factors on gas sources[J]. Marine Geology & Quaternary Geology, 2020, 40(6): 169-177. doi: 10.16562/j.cnki.0256-1492.2020081303

海底沉积物生物气演化特征及气源影响因素分析

  • 基金项目: 国家重点研发计划“冷泉系统发育的地质条件及控制作用”(2018YFC0310001);国家自然科学基金“冲绳海槽中部高硫化氢背景下底栖有孔虫群落与壳体同位素特征”(41306062);山东省自然科学基金“冲绳海槽北部泥火山地球物理定量表征及其活动控制因素分析”(ZR201807100270)
详细信息
    作者简介: 刘煜(1996—),男,硕士研究生,矿产普查与勘探专业,主要从事油气形成与资源评价研究,E-mail:201871276@yangtzeu.com
    通讯作者: 李清(1984—),男,硕士,高级工程师,主要从事天然气水合物地质与地球化学研究与调查工作,E-mail:qing.li@live.cn 林小云(1965—),女,博士,教授,主要从事油气成藏地质与资源评价的科研和教学工作,E-mail:linxy65@126.com
  • 中图分类号: P736.4

Evolution characteristics of biogas in seabed sediments and their influencing factors on gas sources

More Information
  • 为研究海洋天然气水合物生物气源的影响因素及演化模式,选择了某海域3个海底沉积物样品进行微生物演化模拟实验。通过改变生气条件,分析不同温度、pH、碳源、碳源浓度、氮源和地层盐度对海底沉积物产甲烷菌生物气生成的影响。实验结果表明:某海域产甲烷菌在55 ℃时CH4产气量最高;pH为6~8时CH4产气量较高,且pH为10时仍有CH4产出;加入氮源、碳源都有一定程度的促进作用,但过高的碳源浓度会抑制CH4产气量;地层盐度的变化对CH4产气量影响不明显。根据不同温度微生物演化及产气率可将生物气演化分早期、高峰期和晚期3个阶段;pH为6~8、碳源选取乳糖(双糖)且浓度2.0 mL/L以及蛋白质为主要氮源时明显促进产甲烷菌产气率;按照采样点海域地温梯度及环境条件,认为采样点所在海域海底生物气源岩埋藏深度大约为200~500 m,具有弱碱性、弱径流水动力条件的地区可以作为重点勘查地区。

  • 加载中
  • 图 1  不同温度下的实验样品产气量

    Figure 1. 

    图 2  不同pH值下的实验样品产气量

    Figure 2. 

    图 3  不同碳源下的实验样品产气量

    Figure 3. 

    图 4  生物甲烷形成途径示意图[28]

    Figure 4. 

    图 5  不同碳源浓度下的实验样品产气量

    Figure 5. 

    图 6  不同氮源下的实验样品产气量

    Figure 6. 

    图 7  不同盐度浓度下的实验样品产气量

    Figure 7. 

    图 8  某海域沉积物生物气生成演化模式图

    Figure 8. 

    表 1  实验用样品基础信息表

    Table 1.  Basic information of experiment samples

    样品编号采样深度/m含水量/%含碳量/%含硫量/%母质类型
    C1H2.546.800.740.15B
    C3H7.538.000.850.31B
    C9H22.540.000.870.66B
    下载: 导出CSV

    表 2  不同控制因素实验设计表

    Table 2.  Experimental design upon different control factors

    影响条件影响条件设置备注
    温度/℃15、25、35、45、55、65、75、85使用不同水浴培养箱来控制不同温度
    pH值4.0、5.0、6.0、7.0、8.0、9.0、10.0使用无菌无氧1 mol/L的HCl和NaOH溶液来调节pH值
    碳源碳酸钠、甲醇、乙酸、葡萄糖、乳糖、石油醚碳酸钠、葡萄糖、乳糖为1 g/L,甲醇、乙酸、石油醚为1.0 mL/L
    碳源浓度/(mL/L)0.1、0.5、1.0、2.0、5.0选用乙酸作为碳源
    氮源硝酸钠、亚硝酸钠、氯化铵、蛋白胨、酵母膏试剂浓度均为1 g/L
    盐度/(g/L)1、5、10、20使用1 000 mL蒸馏水配置对应盐度
    下载: 导出CSV
  • [1]

    张光学, 黄永样, 祝有海, 等. 南海天然气水合物的成矿远景[J]. 海洋地质与第四纪地质, 2002, 22(1):75-81

    ZHANG Guangxue, HUANG Yongxiang, ZHU Youhai, et al. Prospect of gas hydrate resources in the South China Sea [J]. Marine Geology & Quaternary Geology, 2002, 22(1): 75-81.

    [2]

    吴必豪, 张光学, 祝有海, 等. 中国近海天然气水合物的研究进展[J]. 地学前缘, 2003, 10(1):177-189 doi: 10.3321/j.issn:1005-2321.2003.01.021

    WU Bihao, ZHANG Guangxue, ZHU Youhai, et al. Progress of gas hydrate investigation in China offshore [J]. Earth Science Frontiers, 2003, 10(1): 177-189. doi: 10.3321/j.issn:1005-2321.2003.01.021

    [3]

    Davis K J, Gerlach R. Transition of biogenic coal-to-methane conversion from the laboratory to the field: A review of important parameters and studies [J]. International Journal of Coal Geology, 2018, 185: 33-43. doi: 10.1016/j.coal.2017.11.006

    [4]

    Green M S, Flanegan K C, Gilcrease P C. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U. S. A. [J]. International Journal of Coal Geology, 2008, 76(1-2): 34-45. doi: 10.1016/j.coal.2008.05.001

    [5]

    张祥, 纪宗兰, 杨银山, 等. 关于生物气源岩评价标准的讨论--以柴达木盆地第四系生物气为例[J]. 天然气地球科学, 2004, 15(5):465-470 doi: 10.3969/j.issn.1672-1926.2004.05.005

    ZHANG Xiang, JI Zonglan, YANG Yinshan, et al. Discussion of evaluation criterion for the source rock of biological gas: taking quaternary biological gas in Qaidamu basin as the example [J]. Natural Gas Geoscience, 2004, 15(5): 465-470. doi: 10.3969/j.issn.1672-1926.2004.05.005

    [6]

    仇天雷, 承磊, 罗辉, 等. 一株近海沉积物中产甲烷菌的分离及鉴定[J]. 中国沼气, 2006, 25(2):3-6, 10 doi: 10.3969/j.issn.1000-1166.2006.02.001

    QIU Tianlei, CHENG Lei, LUO Hui, et al. Isolation and characterization of methanogens from sediments in Jiaozhou Bay [J]. China Biogas, 2006, 25(2): 3-6, 10. doi: 10.3969/j.issn.1000-1166.2006.02.001

    [7]

    Park S Y, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM) [J]. Fuel, 2016, 166: 258-267. doi: 10.1016/j.fuel.2015.10.121

    [8]

    丁芳芳. 煤层中产甲烷微生物的培养及产气[D]. 合肥: 合肥工业大学, 2013.

    DING Fangfang. The culture of methanogenic organism and gas production in coalbed[D]. Hefei: Hefei University of Technology, 2013.

    [9]

    Formolo M, Martini A, Petsch S. Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, U. S. A. [J]. International Journal of Coal Geology, 2008, 76(1-2): 86-97. doi: 10.1016/j.coal.2008.03.005

    [10]

    Pandey R, Harpalani S, Feng R M, et al. Changes in gas storage and transport properties of coal as a result of enhanced microbial methane generation [J]. Fuel, 2016, 179: 114-123. doi: 10.1016/j.fuel.2016.03.065

    [11]

    Strąpoć D, Picardal F W, Turich C, et al. Methane-producing microbial community in a coal bed of the Illinois Basin [J]. Applied and Environmental Microbiology, 2008, 74(8): 2424-2432. doi: 10.1128/AEM.02341-07

    [12]

    Jones E J P, Voytek M A, Warwick P D, et al. Bioassay for estimating the biogenic methane-generating potential of coal samples [J]. International Journal of Coal Geology, 2008, 76(1-2): 138-150. doi: 10.1016/j.coal.2008.05.011

    [13]

    Goldstein R H. Fluid inclusions in sedimentary and diagenetic systems [J]. Lithos, 2001, 55(1-4): 159-193. doi: 10.1016/S0024-4937(00)00044-X

    [14]

    王爱宽, 秦勇. 生物成因煤层气实验研究现状与进展[J]. 煤田地质与勘探, 2010, 38(5):23-27 doi: 10.3969/j.issn.1001-1986.2010.05.005

    WANG Aikuan, QIN Yong. Research status and progress of experimental study on biogenic coalbed methane [J]. Coal Geology & Exploration, 2010, 38(5): 23-27. doi: 10.3969/j.issn.1001-1986.2010.05.005

    [15]

    郭红玉, 符超勇, 拜阳, 等. 生物产气对煤层气可采性指标的影响[J]. 天然气工业, 2017, 37(2):46-51 doi: 10.3787/j.issn.1000-0976.2017.02.006

    GUO Hongyu, FU Chaoyong, BAI Yang, et al. Influence of biogenic gas production on coalbed methane recoverability parameters [J]. Natural Gas Industry, 2017, 37(2): 46-51. doi: 10.3787/j.issn.1000-0976.2017.02.006

    [16]

    李明宅, 张洪年, 刘华, 等. 生物气模拟试验的进展[J]. 石油与天然气地质, 1996, 17(2):117-122 doi: 10.11743/ogg19960205

    LI Mingzhai, ZHANG Hongnian, LIU Hua, et al. Advances in simulated test of biogas [J]. Oli & Gas Geology, 1996, 17(2): 117-122. doi: 10.11743/ogg19960205

    [17]

    钱贻伯, 连莉文, 尹小波, 等. 地质沉积物中残留有机质生化产甲烷作用的可行性研究[J]. 中国沼气, 1996, 14(3):13-16

    QIAN Yibo, LIAN Liwen, YIN Xiaobo, et al. A study on bio-methanogenesis of remanent organic matter in geology sediment [J]. China Biogas, 1996, 14(3): 13-16.

    [18]

    陆伟文, 海秀珍. 生物气模拟生成实验及地层中生物气生成量之估算[J]. 石油实验地质, 1991, 13(1):65-76 doi: 10.11781/sysydz199101065

    LU Weiwen, HAI Xiuzhen. Simulation experiments on biogas generation and estimation of generation amount of biogas in strata [J]. Petroleum Geology & Experimental, 1991, 13(1): 65-76. doi: 10.11781/sysydz199101065

    [19]

    邓宇, 钱贻伯, 林世平. 藻类的产甲烷及产烃潜力实验[J]. 中国沼气, 2000, 18(4):24 doi: 10.3969/j.issn.1000-1166.2000.04.005

    DENG Yu, QIAN Yibo, LIN Shiping. Methane and hydrocarbon production potential of algae [J]. China Biogas, 2000, 18(4): 24. doi: 10.3969/j.issn.1000-1166.2000.04.005

    [20]

    戚厚发, 关德师, 钱贻伯, 等. 中国生物气成藏条件[M]. 北京: 石油工业出版社, 1997: 48-61.

    QI Houfa, GUAN Deshi, QIAN Yibo, et al. Biogas Accumulation Conditions in China[M]. Beijing: Petroleum Industry Press, 1997: 48-61.

    [21]

    李美群, 邓洁红, 熊兴耀, 等. 产甲烷菌的研究进展[J]. 酿酒科技, 2009(5):90-93

    LI Meiqun, DENG Jiehong, XIONG Xingyao, et al. Research progress in psychrophilic methanogenic bacteria [J]. Liquor-Making Science & Technology, 2009(5): 90-93.

    [22]

    王娜, 刘晨光, 袁文杰, 等. 氧化还原电位控制下自絮凝酵母高浓度乙醇发酵[J]. 化工学报, 2012, 63(4):1168-1174 doi: 10.3969/j.issn.0438-1157.2012.04.025

    WANG Na, LIU Chenguang, YUAN Wenjie, et al. ORP control on very high gravity ethanol fermentation by flocculating yeast [J]. CIESC Journal, 2012, 63(4): 1168-1174. doi: 10.3969/j.issn.0438-1157.2012.04.025

    [23]

    关德师, 戚厚发, 钱贻伯, 等. 生物气的生成演化模式[J]. 石油学报, 1997, 18(3):31-36 doi: 10.3321/j.issn:0253-2697.1997.03.005

    GUAN Deshi, QI Houfa, QIAN Yibo, et al. Generation and evolution model of biogenic gas [J]. Acta Petrolei Sinica, 1997, 18(3): 31-36. doi: 10.3321/j.issn:0253-2697.1997.03.005

    [24]

    姜乃煌, 宋孚庆, 任冬苓, 等. 甲烷菌发酵阶段划分[J]. 石油勘探与开发, 1993, 20(4):39-43

    JIANG Naihuang, SONG Fuqing, REN Dongling, et al. Determination of different stages of methanobacteria fermentation [J]. Petroleum Exploration and Development, 1993, 20(4): 39-43.

    [25]

    孔媛, 雷怀彦, 许江, 等. 南海北部天然气水合物的形成分解与微生物的偶联关系[J]. 厦门大学学报: 自然科学版, 2018, 57(6):768-777

    KONG Yuan, LEI Huaiyan, XU Jiang, et al. The Coupling between microorganisms and natural gas hydrates in the northern South China Sea [J]. Journal of Xiamen University: Natural Science, 2018, 57(6): 768-777.

    [26]

    Clayton C. Source volumetrics of biogenic gas generation[M]//Vially R. Bacterial Gas. Paris: Editions Technip, 1992: 191-240.

    [27]

    陈浩, 秦勇, 邓泽, 等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层生物产气影响因素[J]. 天然气工业, 2018, 38(6):27-32 doi: 10.3787/j.issn.1000-0976.2018.06.004

    CHEN Hao, QIN Yong, DENG Ze, et al. Factors influencing the biogenic gas production of low rank coal beds in the Jiergalangtu sag, Erlian Basin [J]. Natural Gas Industry, 2018, 38(6): 27-32. doi: 10.3787/j.issn.1000-0976.2018.06.004

    [28]

    张水昌, 赵文智, 李先奇, 等. 生物气研究新进展与勘探策略[J]. 石油勘探与开发, 2005, 32(4):90-96 doi: 10.3321/j.issn:1000-0747.2005.04.015

    ZHANG Shuichang, ZHAO Wenzhi, LI Xianqi, et al. Advances in biogenic gas studies and play strategies [J]. Petroleum Exploration & Development, 2005, 32(4): 90-96. doi: 10.3321/j.issn:1000-0747.2005.04.015

    [29]

    尹小波, 连莉文, 徐洁泉, 等. 产甲烷过程的独特酶类及生化监测方法[J]. 中国沼气, 1998, 16(3):8-12

    YIN Xiaobo, LIAN Liwen, XU Jiequan, et al. Unique enzymes and biochemical monitoring methods in methanogenesis [J]. China Biogas, 1998, 16(3): 8-12.

    [30]

    李本亮, 王明明, 冉启贵, 等. 地层水含盐度对生物气运聚成藏的作用[J]. 天然气工业, 2003, 23(5):16-20 doi: 10.3321/j.issn:1000-0976.2003.05.005

    LI Benliang, WANG Mingming, RAN Qigui, et al. Effect of the salinity of formation water on biogas migration, accumulation and reservoir formation [J]. Natural Gas Industry, 2003, 23(5): 16-20. doi: 10.3321/j.issn:1000-0976.2003.05.005

    [31]

    苏现波, 徐影, 吴昱, 等. 盐度、pH对低煤阶煤层生物甲烷生成的影响[J]. 煤炭学报, 2011, 36(8):1302-1306

    SU Xianbo, XU Ying, WU Yu, et al. Effect of salinity and pH on biogenic methane production of low-rank coal [J]. Journal of China Coal Society, 2011, 36(8): 1302-1306.

    [32]

    林小云, 高甘霖, 徐莹, 等. 生物成因气生成演化模式探讨[J]. 特种油气藏, 2015, 22(1):1-7 doi: 10.3969/j.issn.1006-6535.2015.01.001

    LIN Xiaoyun, GAO Ganlin, XU Ying, et al. Discussion on generation and evolution mode of biogenetic gas [J]. Special Oil & Gas Reservoirs, 2015, 22(1): 1-7. doi: 10.3969/j.issn.1006-6535.2015.01.001

    [33]

    苏丕波, 梁金强, 沙志彬, 等. 神狐深水海域天然气水合物成藏的气源条件[J]. 西南石油大学学报(自然科学版), 2014, 36(2):1-8 doi: 10.11885/j.issn.1674-5086.2013.10.16.01

    SU Peibo, LIANG Jinqiang, SHA Zhibin, et al. Gas source conditions for gas hydrate accumulation in Shenhu deep water area [J]. Journal of Southwest Petroleum University (Science & Natural Edition), 2014, 36(2): 1-8. doi: 10.11885/j.issn.1674-5086.2013.10.16.01

    [34]

    方银霞, 申屠海港, 金翔龙. 冲绳海槽天然气水合物稳定带厚度的计算[J]. 矿床地质, 2002, 21(4):414-418 doi: 10.3969/j.issn.0258-7106.2002.04.013

    FANG Yinxia, SHENTU Haigang, JIN Xianglong. Computation of thickness of hydrate stability zone in Okinawa trough [J]. Mineral Deposits, 2002, 21(4): 414-418. doi: 10.3969/j.issn.0258-7106.2002.04.013

    [35]

    方银霞, 黎明碧, 金翔龙, 等. 东海冲绳海槽天然气水合物的形成条件[J]. 科技通报, 2003, 19(1):1-5 doi: 10.3969/j.issn.1001-7119.2003.01.001

    FANG Yinxia, LI Mingbi, JIN Xianglong, et al. Formation condition of gas hydrate in okinawa trough of the East China Sea [J]. Science and Technology Bulletin, 2003, 19(1): 1-5. doi: 10.3969/j.issn.1001-7119.2003.01.001

    [36]

    黄保家, 肖贤明, 董伟良. 莺歌海盆地烃源岩特征及天然气生成演化模式[J]. 天然气工业, 2002, 22(1):26-30 doi: 10.3321/j.issn:1000-0976.2002.01.007

    HUANG Baojia, XIAO Xianming, DONG Weiliang. Characteristics of Hydrocarbon Source Rocks and Generation & Evolution Model of Natural Gas in Yinggehai Basi [J]. Natural Gas Industry, 2002, 22(1): 26-30. doi: 10.3321/j.issn:1000-0976.2002.01.007

    [37]

    李明宅, 张洪年, 郜建军. 生物气的生成演化模式和初次运移特征[J]. 石油实验地质, 1995, 17(2):147-155 doi: 10.11781/sysydz199502147

    LI Mingzhai, ZHANG Hongnian, GAO Jianjun. Generation and evolution models and pkimary migrationation features of biogases [J]. Petroleum Geology & Experimental, 1995, 17(2): 147-155. doi: 10.11781/sysydz199502147

  • 加载中

(8)

(2)

计量
  • 文章访问数:  1649
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2020-08-13
修回日期:  2020-09-15
刊出日期:  2020-12-25

目录