渤中19-6凝析气田太古宇潜山储层发育主控因素及地质模式

范廷恩, 牛涛, 范洪军, 胡光义, 樊鹏军, 马淑芳, 肖大坤. 渤中19-6凝析气田太古宇潜山储层发育主控因素及地质模式[J]. 海洋地质与第四纪地质, 2021, 41(4): 170-178. doi: 10.16562/j.cnki.0256-1492.2020092701
引用本文: 范廷恩, 牛涛, 范洪军, 胡光义, 樊鹏军, 马淑芳, 肖大坤. 渤中19-6凝析气田太古宇潜山储层发育主控因素及地质模式[J]. 海洋地质与第四纪地质, 2021, 41(4): 170-178. doi: 10.16562/j.cnki.0256-1492.2020092701
FAN Tingen, NIU Tao, FAN Hongjun, HU Guangyi, FAN Pengjun, MA Shufang,  XIAO  Dakun. Archaeozoic buried-hill reservoir of Bozhong 19-6 condensate field: Main controlling factors and development model[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 170-178. doi: 10.16562/j.cnki.0256-1492.2020092701
Citation: FAN Tingen, NIU Tao, FAN Hongjun, HU Guangyi, FAN Pengjun, MA Shufang,  XIAO  Dakun. Archaeozoic buried-hill reservoir of Bozhong 19-6 condensate field: Main controlling factors and development model[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 170-178. doi: 10.16562/j.cnki.0256-1492.2020092701

渤中19-6凝析气田太古宇潜山储层发育主控因素及地质模式

  • 基金项目: 国家科技重大专项“海上开发地震关键技术及应用研究”(2011ZX05024-001)
详细信息
    作者简介: 范廷恩(1971—),男,高级工程师,主要从事开发地质及油藏地球物理方面的研究,E-mail:fante@cnooc.com.cn
  • 中图分类号: TE122.2

Archaeozoic buried-hill reservoir of Bozhong 19-6 condensate field: Main controlling factors and development model

  • 综合运用岩心、测井、地震、野外露头及生产测试资料对渤中19-6太古宇潜山储层发育特征及主控因素进行了分析。研究发现渤中19-6太古宇潜山储层主要受岩石类型、构造运动和风化淋滤等因素影响,储层纵向分为风化带和内幕带,其储层发育主控因素及储层空间分布模式差异明显。其中,风化带受构造和风化淋滤作用双重控制,发育构造缝、风化缝、溶蚀孔隙等储集空间类型,裂缝整体发育呈网状,储层连通性好。受宏观古地貌控制,风化带厚度从古构造高部位向构造低部位呈逐渐减薄的“似层状”分布模式。同时,受岩石类型、局部断层、沟-脊微地貌以及坡度等因素的影响,风化带厚度局部增厚或减薄。潜山内幕带主要受内幕高角度断层控制,基本不受风化作用影响,储集空间以构造缝为主。通过内幕高角度断层的识别和刻画,认为内幕带储层沿高角度断层带状、漏斗型分布。上述认识对于渤中19-6凝析气田开发方案的编制,特别是为潜山储量动用及注采井网部署奠定了重要基础。

  • 加载中
  • 图 1  渤中19-6凝析气田区域位置图

    Figure 1. 

    图 2  山东泰安新泰地区断裂带野外地质露头特征

    Figure 2. 

    图 3  渤中19-6太古宇潜山BZ19-6-G井单井纵向分带特征

    Figure 3. 

    图 4  BZ19-6-G井太古宇潜山岩心特征

    Figure 4. 

    图 5  渤中19-6潜山微观裂缝类型及充填特征

    Figure 5. 

    图 6  渤中19-6太古宇潜山古近系地层沉积前古地貌图

    Figure 6. 

    图 7  太古宇潜山风化带厚度与上覆沙河街组地层厚度交会图

    Figure 7. 

    图 8  渤中19-6凝析气田风化带厚度与坡度关系图

    Figure 8. 

    图 9  潜山内幕高角度断层地震反射特征

    Figure 9. 

    图 10  渤中19-6凝析气田太古宇潜山地质模式

    Figure 10. 

    表 1  渤中19-6太古宇潜山风化带分带标准

    Table 1.  Standards for classification of weathering zone in Bozhong19-6 field

    钻时/(min/m)RS/(Ω·m)RD/(Ω·m)裂缝密度/(条/m)孔隙度/%净毛比%
    风化带8~2975~930180~11003~62.4~6.50.33~0.62
    内幕带12~52440~6200700~220000.8~1.21.7~3.9<0.35
    下载: 导出CSV

    表 2  新泰变质岩露头断层附近裂缝发育密度统计

    Table 2.  Fracture density on the metamorphic outcrop fault near Xintai

    与断层距离/m2040100150200
    裂缝密度/(条/m)破碎带20~305~15<10<5
    下载: 导出CSV
  • [1]

    徐长贵, 于海波, 王军, 等. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征[J]. 石油勘探与开发, 2019, 46(1):25-38

    XU Changgui, YU Haibo, WANG Jun, et al. Formation conditions and accumulation characteristics of Bozhong 19-6 large condensate gas fields in offshore Bohai Bay Basin [J]. Petroleum Exploration and Development, 2019, 46(1): 25-38.

    [2]

    谢玉洪, 张功成, 沈朴, 等. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向[J]. 石油学报, 2018, 39(11):1199-1210 doi: 10.7623/syxb201811001

    XIE Yuhong, ZHANG Gongcheng, SHEN Pu, et al. Formation conditions and exploration direction of large gas field in Bozhong sag of Bohai Bay Basin [J]. Acta Petrolei Sinica, 2018, 39(11): 1199-1210. doi: 10.7623/syxb201811001

    [3]

    侯明才, 曹海洋, 李慧勇, 等. 渤海海域渤中19-6构造带深层潜山储层特征及其控制因素[J]. 地质勘探, 2018, 39(1):33-44

    HOU Mingcai, CAO Haiyang, LI Huiyong, et al. Characteristics and controlling factors of deep buried-hill reservoirs in the BZ19-6 structural belt, Bohai Sea area [J]. Natural Gas Industry, 2018, 39(1): 33-44.

    [4]

    张鹏飞, 刘惠民, 王永诗, 等. 济阳坳陷太古界潜山储集体发育模式[J]. 中国石油大学学报: 自然科学版, 2017, 41(6):20-29

    ZHANG Pengfei, LIU Huimin, WANG Yongshi, et al. Development model of Archaeozoic buried hill reservoir in Jiyang Depression [J]. Journal of China University of Petroleum, 2017, 41(6): 20-29.

    [5]

    张鹏飞, 刘惠民, 曹忠祥, 等. 太古宇潜山风化壳储层发育主控因素分析: 以鲁西-济阳地区为例[J]. 吉林大学学报: 地球科学版, 2015, 45(5):1289-1298

    ZHANG Pengfei, LIU Huimin, CAO Zhongxiang, et al. Analysis on main controlling factors of Archaeozoic weathering crust reservoir: With Jiyang and Luxi Area as an example [J]. Journal of Jilin University: Earth Science Edition, 2015, 45(5): 1289-1298.

    [6]

    邹华耀, 赵春明, 尹志军. 辽东湾JZS潜山变质岩风化壳识别及储集特征[J]. 天然气地球科学, 2015, 26(4):599-607

    ZOU Huayao, ZHAO Chunming, YIN Zhijun. Development and distribution of the metamorphite-weathering crust and its feature of reservoir-property for the JZS Buried Hill, Liaodongwan Area [J]. Natural Gas Geoscience, 2015, 26(4): 599-607.

    [7]

    伍劲, 高先志, 周伟, 等. 柴达木盆地东坪地区基岩风化壳与油气成藏[J]. 新疆石油地质, 2018, 39(6):666-672

    WU Jin, GAO Xianzhi, ZHOU Wei, et al. Base rock weathering crusts and petroleum accumulation in Dongping Area, Qaidam Basin [J]. Xinjiang Petroleum Geology, 2018, 39(6): 666-672.

    [8]

    付淑清, 王钧, 熊海仙, 等. 南岭保护区石坑崆花岗岩风化壳理化特征与环境分析[J]. 生态科学, 2018, 37(5):174-179

    FU Shuqing, WANG Jun, XIONG Haixian, et al. Physical, chemical characteristics of Shikengkong granite weathered crust and potential environments analysis in Nanling area [J]. Ecological Science, 2018, 37(5): 174-179.

    [9]

    李治, 秦启荣, 李朋波, 等. 准噶尔腹部火山岩风化壳储层特征及其影响因素[J]. 地质找矿论丛, 2018, 33(4):589-596 doi: 10.6053/j.issn.1001-1412.2018.04.012

    LI Zhi, QIN Qirong, LI Pengbo, et al. Reservoir characteristics and influence factor of weathering volcanic crust: A case study of Carboniferous System of Shixi Oilfield in the center of Junggar Basin [J]. Contributions to Geology and Mineral Resources Research, 2018, 33(4): 589-596. doi: 10.6053/j.issn.1001-1412.2018.04.012

    [10]

    张顺, 王丽静, 张博远, 等. 松辽盆地安达古隆起风化壳特征及控藏机制[J]. 大庆石油地质与开发, 2019, 38(1):9-16

    ZHANG Shun, WANG Lijing, ZHANG Boyuan, et al. Characteristics of the weathered crust and reservoir-controlling mechanism for Anda Palaeohigh in Songliao Basin [J]. Petroleum Geology and Oilfield Development in Daqing, 2019, 38(1): 9-16.

    [11]

    陈志海, 牟珍宝, 孙钰. 越南白虎油田缝洞型基岩油藏特征与开发对策[J]. 中外能源, 2009, 14(9):45-49

    CHEN Zhihai, MU Zhenbao, SUN Yu. Characteristics and development strategy of fracture-cavern basement oil reservoir in White Tiger Field, Vietnam [J]. Sino-Global Energy, 2009, 14(9): 45-49.

    [12]

    张鹏飞, 曹忠祥, 刘慧民, 等. 太古界潜山内幕储层发育主控因素分析: 以鲁西-济阳地区为例[J]. 中国矿业大学学报, 2016, 45(1):96-104

    ZHANG Pengfei, CAO Zhongxiang, LIU Huimin, et al. Main controlling factors of Archaeozoic inner buried hill reservoir: with Luxi and Jiyang area as an example [J]. Journal of China University of Mining & Technology, 2016, 45(1): 96-104.

    [13]

    谢文彦, 孟卫工, 张占文, 等. 辽河坳陷潜山内幕多期裂缝油藏成藏模式[J]. 石油勘探与开发, 2006, 33(6):649-652 doi: 10.3321/j.issn:1000-0747.2006.06.001

    XIE Wenyan, MENG Weigong, ZHANG Zhanwen, et al. Formation model of multi-stage fracture reservoirs inside the buried hills in Liaohe Depression [J]. Petroleum Exploration and Development, 2006, 33(6): 649-652. doi: 10.3321/j.issn:1000-0747.2006.06.001

    [14]

    马志宏. 辽河坳陷太古宇变质岩内幕油藏成藏特征[J]. 油气地质与采收率, 2013, 20(2):25-29 doi: 10.3969/j.issn.1009-9603.2013.02.006

    MA Zhihong. Formation features of interior reservoir in metamorphic rock of Archean Eonothem, Liaohe depression [J]. Petroleum Geology and Recovery Efficiency, 2013, 20(2): 25-29. doi: 10.3969/j.issn.1009-9603.2013.02.006

    [15]

    任芳祥, 龚姚进, 谷团, 等. 潜山内幕油藏裂缝发育段井眼信息响应特征研究[J]. 天然气地球科学, 2015, 26(9):1781-1792

    REN Fangxiang, GONG Yaojin, GU Tuan, et al. Research on the response characteristics of wellbore multi-information in the fracture developed section of the buried hill inside reservoirs [J]. Natural Gas Geoscience, 2015, 26(9): 1781-1792.

    [16]

    高先志, 陈振岩, 邹志文, 等. 辽河西部凹陷兴隆台高潜山内幕油气藏形成条件和成藏特征[J]. 中国石油大学学报: 自然科学版, 2007, 31(6):6-9

    GAO Zhixiang, CHEN Zhenyan, ZOU Zhiwen, et al. Forming conditions and accumulation features of oil pools within the inner of highly buried-hills of Xinglongtai in west sag of Liaohe Depression [J]. Journal of China University of Petroleum, 2007, 31(6): 6-9.

    [17]

    宋柏荣, 胡英杰, 边少之, 等. 辽河坳陷兴隆台潜山结晶基岩油气储层特征[J]. 石油学报, 2011, 32(1):77-82 doi: 10.7623/syxb201101011

    SONG Bairong, HU Yingjie, BIAN Shaozhi, et al. Reservoir characteristics of the crystal basement in the Xinglongtai buried-hill, Liaohe Depression [J]. Acta Petrolei Sinica, 2011, 32(1): 77-82. doi: 10.7623/syxb201101011

    [18]

    Cuong T X, Warren J K. Bach ho field, a fractured granitic basement reservoir, cuu long basin, offshore SE Vietnam: a “buried-hill” play [J]. Journal of Petroleum Geology, 2009, 32(2): 129-156. doi: 10.1111/j.1747-5457.2009.00440.x

    [19]

    李家强. 层拉平方法在沉积前古地貌恢复中的应用[J]. 油气地球物理, 2008, 6(2):46-49

    LI Jiaqiang. Application of bedding flattening in the process of rebuilding paleogeomorpholog before basin deposition: A case study in Dongying sag, Jiyang Depression [J]. Petroleum Geophysics, 2008, 6(2): 46-49.

    [20]

    聂妍. 潜山微小断层的表征方法[J]. 中国科技论文, 2019, 14(1):28-32, 50 doi: 10.3969/j.issn.2095-2783.2019.01.006

    NIE Yan. Research on small faults description of buried hill [J]. China Sciencepaper, 2019, 14(1): 28-32, 50. doi: 10.3969/j.issn.2095-2783.2019.01.006

  • 加载中

(10)

(2)

计量
  • 文章访问数:  1349
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2020-09-27
修回日期:  2020-11-19
刊出日期:  2021-08-28

目录