帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型

黄威, 胡邦琦, 徐磊, 宋维宇, 丁雪, 郭建卫, 崔汝勇, 虞义勇. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
引用本文: 黄威, 胡邦琦, 徐磊, 宋维宇, 丁雪, 郭建卫, 崔汝勇, 虞义勇. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501
Citation: HUANG Wei, HU Bangqi, XU Lei, SONG Weiyu, DING Xue, GUO Jianwei, Cui Ruyong, YU Yiyong. Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin[J]. Marine Geology & Quaternary Geology, 2021, 41(1): 199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型

  • 基金项目: 国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);国家自然科学基金重点项目 “冲绳海槽海底冷泉—热液相互作用及资源效应”(91858208);中国地质调查局地质调查二级项目(DD20191010,DD20190581);青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室自主课题“帕劳海脊两侧海盆锰结核的铂族元素和铼锇同位素记录的海脊形成演化事件”(MMRZZ201808)
详细信息
    作者简介: 黄威(1981―),男,高级工程师,研究方向为海底成矿作用与物质循环,E-mail:huangw@mail.cgs.gov.cn
    通讯作者: 胡邦琦(1983—),男,研究员,研究方向为海洋沉积与矿产资源,E-mail:bangqihu@gmail.com
  • 中图分类号: P736.4, P744

Geochemical characteristics and genesis of the ferromanganese nodules in the middle western margin of the Parece Vela Basin

More Information
  • 深海铁锰结核能有效记录海域内重大地质事件和气候环境信息,且富含多种金属物质极具资源潜力,因而广受关注。通过对帕里西维拉海盆西侧边缘中段海域内新发现的12个站位铁锰结核的地球化学特征研究,发现与全球主要成矿区内的铁锰结核相比,Mn及主要赋存在锰氧化物中的Ni、Cu、Mo的含量较低(分别为8.20%~25.24%、0.11%~0.54%、0.08%~0.31%和0.01%~0.03%),主要由铁的羟基氧化物吸附的Ti,以及还会与钙磷酸盐发生耦合置换反应的REY的含量较高(分别为0.45%~1.88%、0.04%~0.19%),含量中等的Co(0.06%~0.27%)在铁锰相物质和硅酸盐相内核中分散分布。样品REY的标准化配分模式显示出明显一致的Ce正异常和Y负异常。铁锰结核从海水中捕获的Ce3+容易被氧化成难溶且不具有活性的Ce4+,Y则在结核内存在形式不稳定,容易发生解吸,致使Ce和Y分别呈现出相对于其他REY逐步富集和亏损的特征。研究区形成时间较晚,铁锰结核生长发育的时间不足,且四周地形较高,缺乏与外界连通的水道,阻碍了诸如来自南极的富氧底层流的大规模进入。区域内结核样品主要为水成型,成岩成因组分的供给太低,降低了主要有用组分的含量。以上诸多因素可能会导致区域内的铁锰结核难以富集成矿。

  • 加载中
  • 图 1  帕里西维拉海盆及周边海域内铁锰结核的分布

    Figure 1. 

    图 2  铁锰结核REY的PAAS标准化配分模式

    Figure 2. 

    图 3  铁锰结核REY成因类型判别

    Figure 3. 

    图 4  本文研究区与全球主要成矿区内铁锰结核的主要有用组分平均含量对比

    Figure 4. 

    表 1  铁锰结核内主量元素及主要有用组分间的相关系数矩阵

    Table 1.  Pearson correlation coefficient matrix for major and valuable metal elements contained in the studied ferromanganese nodules

    AlCaFeKMgMnNaSiTiPCoCuMo
    Ca0.01
    Fe−0.120.91
    K0.57−0.42−0.54
    Mg−0.24−0.77−0.610.22
    Mn−0.780.170.30−0.500.33
    Na0.27−0.32−0.380.690.52−0.01
    Si0.60−0.59−0.710.670.05−0.850.13
    Ti−0.100.850.88−0.56−0.600.23−0.25−0.68
    P−0.290.850.91−0.64−0.480.43−0.29−0.830.92
    Co−0.51−0.17−0.09−0.380.190.190.00−0.250.250.25
    Cu−0.61−0.49−0.35−0.210.790.670.21−0.33−0.38−0.140.32
    Mo−0.550.230.27−0.580.260.89−0.06−0.800.270.410.120.60
    Ni−0.53−0.28−0.17−0.480.620.580.01−0.44−0.060.120.530.840.66
    下载: 导出CSV

    表 2  铁锰结核内REY与主量元素间的相关系数矩阵

    Table 2.  Pearson correlation coefficient matrix for REY and major elements contained in the studied ferromanganese nodules

    AlCaFeKMgMnNaPSiTi
    La−0.150.920.93−0.63−0.660.29−0.360.95−0.730.97
    Ce−0.140.890.92−0.58−0.680.22−0.350.93−0.670.98
    Pr−0.130.920.93−0.63−0.680.25−0.390.95−0.700.96
    Nd−0.120.920.94−0.62−0.670.27−0.370.95−0.710.96
    Sm−0.080.940.95−0.60−0.680.25−0.380.95−0.700.94
    Eu−0.120.920.94−0.62−0.630.28−0.340.96−0.730.96
    Gd−0.100.940.96−0.60−0.670.28−0.360.95−0.720.95
    Tb−0.090.940.95−0.60−0.650.29−0.360.95−0.720.94
    Dy−0.090.930.93−0.61−0.620.31−0.330.95−0.740.94
    Y0.000.940.91−0.55−0.660.26−0.320.91−0.690.90
    Ho−0.070.940.94−0.58−0.630.32−0.320.93−0.740.92
    Er−0.090.940.93−0.59−0.620.34−0.320.93−0.750.92
    Tm−0.110.930.92−0.61−0.580.36−0.300.95−0.770.93
    Yb−0.090.930.92−0.60−0.590.36−0.300.94−0.760.92
    Lu−0.110.920.91−0.62−0.570.36−0.300.94−0.770.93
    ΣREY−0.130.920.94−0.60−0.680.25−0.350.95−0.700.98
    下载: 导出CSV
  • [1]

    Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, 2014: 273-291.

    [2]

    Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials [J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.

    [3]

    Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-Sea Mining: Resource Potential, Technical and Environmental Considerations. Cham: Springer International Publishing, 2017: 23-63.

    [4]

    Mukhopadhyay R, Ghosh A K, Iyer S D. The Indian Ocean Nodule Field: Geology and Resource Potential[M]. 2nd ed. Oxford: Elsevier, 2018: 1-413.

    [5]

    Flint J M. Description of manganese nodules collected by the U. S. S. NERO during survey for a trans-pacific cable[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.847719.

    [6]

    Bezrukov P L, Skornyakova N S, Murdmaa I O, et al. (Appendix) Chemical composition of Fe-Mn nodules from the Pacific Ocean[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.735163.

    [7]

    Glockhoff C. Annotated record of the detailed examination of Mn deposits from ANTIPODE Expedition stations[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.858155.

    [8]

    Party S S. Annotated record of the detailed examination of Mn deposits from PROA Expedition stations[Z]. Scripps Institution of Oceanography, UC San Diego, PANGAEA, https://doi.org/10.1594/PANGAEA.860231.

    [9]

    Skornyakova N S, Zenkevich N L. (Table 2) Abundance of nodules on the bottom surface, data from grab samples[Z]. P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, PANGAEA, https://doi.org/10.1594/PANGAEA.734939.

    [10]

    Tomoda Y. Description of manganese nodules and crust collected from the Hakuho Maru Cruise KH-71-1, January-March, 1971, East Mariana, Caroline and Philippine Basins[Z]. PANGAEA, https://doi.org/10.1594/PANGAEA.857960.

    [11]

    NOAA. (National Oceanic and Atmospheric Administration, USA). Index to marine and lacustrine geological samples[Z]. http://www.ngdc.noaa.gov/geosamples/showsample.jspimlgs=imlgs0201090;0201089;0201079;0150668;0146610;0146609;0146605.

    [12]

    陈穗田, Stüben D. 菲律宾海的锰结壳和锰结核[J]. 海洋学报, 1997, 19(4):109-116

    CHEN Suitian, Stüben D. Manganese crusts and nodules in the Philippine Sea [J]. Acta Oceanologica Sinica, 1997, 19(4): 109-116.

    [13]

    何良彪. 马里亚纳海脊-西菲律宾海盆铁锰结核的地球化学[J]. 科学通报, 1991, 36(14):1190-1193

    HE Liangbiao. Geochemical characteristics of Fe-Mn nodules and crusts from the Mariana ridge and the west Philippine basin [J]. Chinese Science Bulletin, 1991, 36(14): 1190-1193.

    [14]

    Usui A, Graham I J, Ditchburn R G, et al. Growth history and formation environments of ferromanganese deposits on the Philippine Sea Plate, northwest Pacific Ocean [J]. Island Arc, 2007, 16(3): 420-430. doi: 10.1111/j.1440-1738.2007.00592.x

    [15]

    Party Shipboard Scientific. Initial reports of the deep sea drilling project leg 59: 4 site449: west side of the parece vela basin[R]. 1981.

    [16]

    吴时国, 范建柯, 董冬冬. 论菲律宾海板块大地构造分区[J]. 地质科学, 2013, 48(3):677-692 doi: 10.3969/j.issn.0563-5020.2013.03.008

    WU Shiguo, FAN Jianke, DONG Dongdong. Discussion on the tectonic division of the Philippine Sea Plate [J]. Chinese Journal of Geology, 2013, 48(3): 677-692. doi: 10.3969/j.issn.0563-5020.2013.03.008

    [17]

    Sdrolias M, Roest W R, Müller R D. An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins [J]. Tectonophysics, 2004, 394(1-2): 69-86. doi: 10.1016/j.tecto.2004.07.061

    [18]

    Okino K, Ohara Y, Fujiwara T, et al. Tectonics of the southern tip of the Parece Vela Basin, Philippine Sea Plate [J]. Tectonophysics, 2009, 466(3-4): 213-228. doi: 10.1016/j.tecto.2007.11.017

    [19]

    殷征欣, 李正元, 沈泽中, 等. 西太平洋帕里西维拉海盆不对称性发育特征及其成因[J]. 吉林大学学报: 地球科学版, 2019, 49(1):218-229

    YIN Zhengxin, LI Zhengyuan, SHEN Zezhong, et al. Asymmetric geological developments and their geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University: Earth Science Edition, 2019, 49(1): 218-229.

    [20]

    Tani K, Dunkley D J, Ohara Y. Termination of backarc spreading: zircon dating of a giant oceanic core complex [J]. Geology, 2011, 39(1): 47-50. doi: 10.1130/G31322.1

    [21]

    张臻, 李三忠. 雅浦沟-弧体系构造演化过程[J]. 海洋地质与第四纪地质, 2019, 39(5):138-146

    ZHANG Zhen, LI Sanzhong. Tectonic evolution of the Yap trench-arc system [J]. Marine Geology & Quaternary Geology, 2019, 39(5): 138-146.

    [22]

    Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x

    [23]

    Lee I, Ogawa Y. Bottom-current deposits in the Miocene–Pliocene Misaki Formation, Izu forearc area, Japan [J]. Island Arc, 1998, 7(3): 315-329. doi: 10.1111/j.1440-1738.1998.00192.x

    [24]

    Xiong Z F, Li T G, Algeo T, et al. Paleoproductivity and paleoredox conditions during late Pleistocene accumulation of laminated diatom mats in the tropical West Pacific [J]. Chemical Geology, 2012, 334: 77-91. doi: 10.1016/j.chemgeo.2012.09.044

    [25]

    中国大洋矿产资源调查研究开发协会. GB/T 17229-1998 大洋多金属结核矿产勘查规程[S]. 北京: 中国标准出版社, 1998.

    China Ocean Mineral Resources Investigation, Research and Development Association. GB/T 17229-1998 The expertise for oceanic polymetallic nodules survey[S]. Beijing: China Standard Press, 1998.

    [26]

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 20260-2006 海底沉积物化学分析方法[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 20260-2006 Chemcial analysis methods for marine sediment[S]. Beijing: China Standard Press, 2006.

    [27]

    Paul S A L, Volz J B, Bau M, et al. Calcium phosphate control of REY patterns of siliceous-ooze-rich deep-sea sediments from the central equatorial Pacific [J]. Geochimica et Cosmochimica Acta, 2019, 251: 56-72. doi: 10.1016/j.gca.2019.02.019

    [28]

    Mclennan S M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [29]

    Broecker W S. A need to improve reconstructions of the fluctuations in the calcite compensation depth over the course of the Cenozoic [J]. Paleoceanography, 2008, 23(1): PA1204.

    [30]

    Van Andel T H. Mesozoic/Cenozoic calcite compensation depth and the global distribution of calcareous sediments [J]. Earth and Planetary Science Letters, 1975, 26(2): 187-194. doi: 10.1016/0012-821X(75)90086-2

    [31]

    Banerjee R, Roy S, Dasgupta S, et al. Petrogenesis of ferromanganese nodules from east of the Chagos Archipelago, Central Indian Basin, Indian Ocean [J]. Marine Geology, 1999, 157(3-4): 145-158. doi: 10.1016/S0025-3227(98)00156-X

    [32]

    Bonatti E, Kraemer T, Rydell H. Classification and genesis of submarine iron-manganese deposits[M]//Horn D R. Ferromanganese Deposits on the Ocean Floor. Washington: National Science Foundation, 1972.

    [33]

    Halbach P, Scherhag C, Hebisch U, et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean [J]. Mineralium Deposita, 1981, 16(1): 59-84.

    [34]

    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium [J]. Chemical Geology, 2014, 381: 1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [35]

    Josso P, Pelleter E, Pourret O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements [J]. Ore Geology Reviews, 2017, 87: 3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [36]

    Bau M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect [J]. Geochimica et Cosmochimica Acta, 1999, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9

    [37]

    Bau M, Koschinsky A, Dulski P, et al. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J]. Geochimica et Cosmochimica Acta, 1996, 60(10): 1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [38]

    Halbach P, Friedrich G, Von Stackelberg U. The Manganese Nodule Belt of the Pacific Ocean–Geological Environment Nodule Formation, and Mining Aspects[M]. Stuttgart: Ferdinand Enke Verlag, 1988: 254.

    [39]

    Jung H S, Lee C B. Growth of diagenetic ferromanganese nodules in an oxic deep-sea sedimentary environment, northeast equatorial Pacific [J]. Marine Geology, 1999, 157(3-4): 127-144. doi: 10.1016/S0025-3227(98)00154-6

    [40]

    Deng Y N, Ren J B, Guo Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific [J]. Scientific Reports, 2017, 7: 16539. doi: 10.1038/s41598-017-16379-1

    [41]

    Zhang J, Nozaki Y. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean [J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4631-4644. doi: 10.1016/S0016-7037(96)00276-1

    [42]

    Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions [J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011

    [43]

    姜学钧, 姚德, 翟世奎. 过渡金属元素Cu、Co、Ni在铁锰结核(壳)中富集的控制因素[J]. 海洋地质与第四纪地质, 2004, 24(3):41-48

    JIANG Xuejun, YAO De, ZHAI Shikui. Factors controlling the concentration of the transition metals Cu, Co and Ni in the ferromanganese deposits: an overview [J]. Marine Geology & Quaternary Geology, 2004, 24(3): 41-48.

    [44]

    Foster A L, Klofas J M, Hein J R, et al. Speciation of energy critical elements in marine ferromanganese crusts and nodules by principal component analysis and least-squares fits to XAFS spectra[C]//American Geophysical Union, Fall Meeting 2011.2011.

    [45]

    Wasylenki L E, Weeks C L, Bargar J R, et al. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite [J]. Geochimica et Cosmochimica Acta, 2011, 75(17): 5019-5031. doi: 10.1016/j.gca.2011.06.020

    [46]

    Peacock C L, Sherman D M. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules [J]. American Mineralogist, 2007, 92(7): 1087-1092. doi: 10.2138/am.2007.2378

    [47]

    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts [J]. Geochemical Journal, 2009, 43(1): 37-47. doi: 10.2343/geochemj.1.0005

    [48]

    Marcus M A, Toner B M, Takahashi Y. Forms and distribution of Ce in a ferromanganese nodule [J]. Marine Chemistry, 2018, 202: 58-66. doi: 10.1016/j.marchem.2018.03.005

    [49]

    姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学: 地球科学, 2011, 54(2):197-203 doi: 10.1007/s11430-010-4070-4

    JIANG Xuejun, LIN Xuehui, YAO De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts [J]. Science China Earth Sciences, 2011, 54(2): 197-203. doi: 10.1007/s11430-010-4070-4

    [50]

    Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts [J]. Chemical Geology, 2018, 493: 224-233. doi: 10.1016/j.chemgeo.2018.05.045

    [51]

    Liao J L, Sun X M, Li D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies [J]. Chemical Geology, 2019, 512: 58-68. doi: 10.1016/j.chemgeo.2019.02.039

    [52]

    Petersen S, Krätschell A, Augustin N, et al. News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources [J]. Marine Policy, 2016, 70: 175-187. doi: 10.1016/j.marpol.2016.03.012

    [53]

    Dutkiewicz A, Judge A, Müller R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean [J]. Geology, 2020, 48(3): 293-297. doi: 10.1130/G46836.1

    [54]

    Xiao C H, Wang Y H, Lin J. Constraints of magnetostratigraphic and mineralogical data on the provenance of sediments in the Parece Vela Basin of the western Pacific [J]. Journal of Asian Earth Sciences, 2020, 196: 104373. doi: 10.1016/j.jseaes.2020.104373

    [55]

    许东禹. 大洋矿产地质学[M]. 北京: 海洋出版社, 2013.

    XU Dongyu. Ocean Mineral Geology[M]. Beijing: Ocean Press, 2013.

    [56]

    袁良榕, 张恩. 大洋多金属结核的矿物学特征与南极底流(AABW)活动[J]. 矿物学报, 2018, 38(5):481-489

    YUAN Liangrong, ZHANG En. Mineralogical characteristics of oceanic polymetallic nodules and the activities of the Antarctic bottom water (AABW) [J]. Acta Mineralogica Sinica, 2018, 38(5): 481-489.

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1680
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2020-10-15
修回日期:  2020-11-26
刊出日期:  2021-02-28

目录