-
摘要:
末次冰期低海平面时期出露的巽他陆架植被变化对全球碳循环影响有着重要影响,但目前植被重建结果仍存在很大争议。利用巽他陆架区域现有末次冰期的碳同位素和植物孢粉记录进行了古植被重建。与全新世相比,末次冰期时热带雨林的分布范围向赤道方向收缩,呈现不均匀的带状分布,而远离赤道的区域草本植物扩张。赤道辐合带的向南移动和热带太平洋的类El Niño状态导致的巽他陆架区域整体降水减少是造成这种现象的重要原因。山地在冰期植被垂直分布结构的演化中起着重要作用。在湿而冷的区域,山地雨林向下扩展;而在干而冷的区域,山地扮演着雨林避难所的角色。巽他陆架古植被重建工作仍面临着隐域性植被、植被指标局限性等难点。
Abstract:Changes in the vegetation of the Sunda shelf exposed during the last ice period at low sea level have important implications for global carbon cycle impacts. However, the results of current vegetation reconstructions are still highly controversial. A paleo-vegetation reconstruction was conducted using the available carbon isotope and pollen records of the last ice age in the Sunda shelf region. Compared to the Holocene, the distribution range of tropical rainforests contracted toward the equator during the last glacial period, showing an uneven zonal distribution pattern, while the herbaceous vegetation expanded in the regions far from the equator. The southward shift of the Intertropical Convergence Zone and the overall decrease of precipitation in the Sunda shelf region due to the El Niño-like state of the tropical Pacific Ocean are important reasons for this phenomenon. Mountains play an essential role in the evolution of the vertical distribution structure of vegetation during the ice age. In the wet and cold regions, montane rainforests expanded downward, while in the dry and cold regions, mountains played the role of rainforest refuges. The reconstruction of ancient vegetation on the Sunda shelf still faces difficulties such as cryptic vegetation and limitations of vegetation indicators, and more work is needed to improve it.
-
Key words:
- palaeo-vegetation /
- carbon isotope /
- pollen records /
- Sunda shelf /
- last glacial period
-
表 1 巽他陆架及周边地区末次冰期碳同位素变化记录
Table 1. Carbon isotope records in the Sunda shelf and surrounding areas during the last glacial period
站位 经纬度 水深/m 碳同位素值范围/‰ 参考文献 湖泊/海洋记录 BJ8-03-91GGC 2°52′N,118°23′E 2326 –30.8~–32.9 [11] SO189-144KL 1°5′N,98°1′E 481 –28.8~–31.9 [37] 17962 7°11′N,112°5′E 1968 –28.4~–33.9 [38] 18252-3 9°14'N,109°23'E 1273 –27.3~–34.5 [39] MD05-2894 7°2'N,111°33'E 1982 –29.1~–36.6 [40] IDLE-MAT10-2B 2°31′S,121°24′E 137 –32.8~–44.9 [41] GEOB10053-7 8°41′S,112°52′E 1375 –24.2~–31.5 [44] GEOB10069-3 9°36′S,120°55′E 1250 –24.6~–28.9 [11] IDLE-TOW10-9B 2°30′S,121°30′E 154 –25.0~–41.0 [42] SO18515 3°37'S,119°21'E 688 –25.0~–29.6 [16] 陆地记录 Niah洞穴 3°49′N,113°46′E –22.9~–26.2 [9] Gomantong洞穴 5°32'N,118°5'E –26.1~–27.7 [33] Bau Bau洞穴 0°55'S,117°13'E –23.5~–27.8 [33] Batu洞穴 3°13′N,101°42′E –26.2~–22.6 [9] Makangit洞穴 10°28′N,119°27′E –19.5~–30.3 [9] Gangub洞穴 8°31′N,117°33′E –18.0~–26.3 [9] Saleh洞穴 3°1'S,115°59'E –17.2~–27.3 [14] 表 2 巽他陆架及周边地区末次冰期孢粉记录
Table 2. Pollen records in the Sunda shelf and surrounding areas during the last glacial period
站位 经纬度 水深/m 草本植物比例/% 参考文献 湖泊/海洋记录 17962 7°11′N,112°5′E 1968 10~30 [49] 17964 1°5′N,98°1′E 1556 5~20 [50] 18287 5°39′N,110°39′E 598 10~40 [51] 18300 4°21′N,108°39′E 91 5~75 [48] 18302 4°09'N,108°34'E 83 5~40 [48] 18323 2°47'N,107°53'E 92 4~55 [48] CG-2 6°23′N,110°09′E 1239 1~35 [19] NS07-25 6°40′N,113°33′E 2006 0~20 [52] CB-19 7°46′N,114°40′E 1798 0~20 [53] MD06-3075 6°28′N,125°49′E 1878 1~18 [61] G6-4 10°47′S,118°04′E 3510 20~60 [67] SHI-9014 5°46′S,126°58′E 3163 20~55 [68] BRA94-42 6°04'S,102°25'E 2542 2~52 [64] 陆地记录 Niah 3°49′N,113°46′E 0~35 [54] Kelabit 3°34'N,115°33'E 5~40 [55] Sentarum 0°44'N,112°06'E 5~20 [56] NTSH 7°52′N,99°28′E 0~20 [60] Nee Soon 1°24′N,103°48′E 5~30 [59] Sim Sim 2°25′N,98°47′E 0~60 [58] Di-Atas 1°04'S,100°46'E 0 [57] Wanda 2°33'S,121°23'E 5~50 [43] Tondano 1°29'N,124°50'E 0~95 [63] Rawa 6°11′S,105°59′E 0~60 [65] Bandung 7°S,108°E 0~70 [62,66] Misedor 1°N,117°E 0~40 [62] Halmahera 2°N,128°E 0~30 [62] -
[1] Hanebuth T J J, Voris H K, Yokoyama Y, et al. Formation and fate of sedimentary depocentres on Southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications [J]. Earth-Science Reviews, 2011, 104(1-3): 92-110. doi: 10.1016/j.earscirev.2010.09.006
[2] Hanebuth T J J, Stattegger K, Bojanowski A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited [J]. Global and Planetary Change, 2009, 66(1-2): 76-84. doi: 10.1016/j.gloplacha.2008.03.011
[3] 贾国东. 冰期出露的巽他陆架?: 重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11):1157-1162 doi: 10.11867/j.issn.1001-8166.2017.11.1157
JIA Guodong. Exposed Sunda Shelf during the glacial times: An important component of the terrestrial carbon reservoir? [J]. Advances in Earth Science, 2017, 32(11): 1157-1162. doi: 10.11867/j.issn.1001-8166.2017.11.1157
[4] Bird M I, Taylor D, Hunt C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A savanna corridor in Sundaland? [J]. Quaternary Science Reviews, 2005, 24(20-21): 2228-2242. doi: 10.1016/j.quascirev.2005.04.004
[5] Montenegro A, Eby M, Kaplan J O, et al. Carbon storage on exposed continental shelves during the glacial-interglacial transition [J]. Geophysical Research Letters, 2006, 33(8): L08703.
[6] Anhuf D, Ledru M P, Behling H, et al. Paleo-environmental change in Amazonian and African rainforest during the LGM [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(3-4): 510-527. doi: 10.1016/j.palaeo.2006.01.017
[7] Prentice I C, Harrison S P, Bartlein P J. Global vegetation and terrestrial carbon cycle changes after the last ice age [J]. New Phytologist, 2011, 189(4): 988-998. doi: 10.1111/j.1469-8137.2010.03620.x
[8] Heaney L R. A synopsis of climatic and vegetational change in Southeast Asia[C]//Tropical Forests and Climate. Dordrecht: Springer Netherlands, 1991: 53-61.
[9] Wurster C M, Bird M I, Bull I D, et al. Forest contraction in north equatorial Southeast Asia during the Last Glacial Period [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(35): 15508-15511. doi: 10.1073/pnas.1005507107
[10] O’Leary M H. Carbon isotope fractionation in plants [J]. Phytochemistry, 1981, 20(4): 553-567. doi: 10.1016/0031-9422(81)85134-5
[11] Dubois N, Oppo D W, Galy V V, et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25, 000 years [J]. Nature Geoscience, 2014, 7(7): 513-517. doi: 10.1038/ngeo2182
[12] Waliser D E, Gautier C. A satellite-derived climatology of the ITCZ [J]. Journal of Climate, 1993, 6(11): 2162-2174. doi: 10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2
[13] Yang S, Zhang T T, Li Z N, et al. Climate variability over the maritime continent and its role in global climate variation: a review [J]. Journal of Meteorological Research, 2019, 33(6): 993-1015. doi: 10.1007/s13351-019-9025-x
[14] Wurster C M, Rifai H, Zhou B, et al. Savanna in equatorial Borneo during the late Pleistocene [J]. Scientific Reports, 2019, 9(1): 6392. doi: 10.1038/s41598-019-42670-4
[15] Konecky B, Russell J, Bijaksana S. Glacial aridity in central Indonesia coeval with intensified monsoon circulation [J]. Earth and Planetary Science Letters, 2016, 437: 15-24. doi: 10.1016/j.jpgl.2015.12.037
[16] Wicaksono S A, Russell J M, Holbourn A, et al. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2017, 157: 152-163. doi: 10.1016/j.quascirev.2016.12.006
[17] Aldrian E, Dwi Susanto R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature [J]. International Journal of Climatology, 2003, 23(12): 1435-1452. doi: 10.1002/joc.950
[18] Chang C P, Wang Z, Ju J H, et al. On the relationship between western maritime continent monsoon rainfall and ENSO during northern winter [J]. Journal of Climate, 2004, 17(3): 665-672. doi: 10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2
[19] Yang Z B, Li T G, Lei Y L, et al. Vegetation evolution-based hydrological climate history since LGM in southern South China Sea [J]. Marine Micropaleontology, 2020, 156: 101837. doi: 10.1016/j.marmicro.2020.101837
[20] DiNezio P N, Tierney J E. The effect of sea level on glacial Indo-Pacific climate [J]. Nature Geoscience, 2013, 6(6): 485-491. doi: 10.1038/ngeo1823
[21] Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans [J]. Earth and Planetary Science Letters, 2014, 387: 240-251. doi: 10.1016/j.jpgl.2013.11.032
[22] Griffiths M L, Drysdale R N, Gagan M K, et al. Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise [J]. Nature Geoscience, 2009, 2(9): 636-639. doi: 10.1038/ngeo605
[23] Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum [J]. Nature, 2007, 449(7161): 452-455. doi: 10.1038/nature06164
[24] Tierney J E, Oppo D W, Rosenthal Y, et al. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography, 2010, 25(1): PA1102.
[25] Kershaw A P, Van Der Kaars S, Flenley J R. The quaternary history of far Eastern rainforests[C]//Tropical Rainforest Responses to Climatic Change. Berlin, Heidelberg: Springer, 2011: 85-123.
[26] Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 503-537. doi: 10.1146/annurev.pp.40.060189.002443
[27] Collins J A, Schefuß E, Govin A, et al. Insolation and glacial-interglacial control on southwestern African hydroclimate over the past 140000 years [J]. Earth and Planetary Science Letters, 2014, 398: 1-10. doi: 10.1016/j.jpgl.2014.04.034
[28] Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology [J]. Earth and Planetary Science Letters, 2008, 275(1-2): 1-16. doi: 10.1016/j.jpgl.2008.07.012
[29] Gratton C, Forbes A E. Changes in δ13C stable isotopes in multiple tissues of insect predators fed isotopically distinct prey [J]. Oecologia, 2006, 147(4): 615-624. doi: 10.1007/s00442-005-0322-y
[30] Wurster C M, McFarlane D A, Bird M I. Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States [J]. Geochimica et Cosmochimica Acta, 2007, 71(13): 3302-3310. doi: 10.1016/j.gca.2007.05.002
[31] Zahn A, Haselbach H, Güttinger R. Foraging activity of central European Myotis myotis in a landscape dominated by spruce monocultures [J]. Mammalian Biology, 2005, 70(5): 265-270. doi: 10.1016/j.mambio.2004.11.020
[32] Wurster C M, Bird M I, Bull I D, et al. A protocol for radiocarbon dating tropical subfossil cave guano [J]. Radiocarbon, 2009, 51(3): 977-986. doi: 10.1017/S0033822200034056
[33] Wurster C M, Rifai H, Haig J, et al. Stable isotope composition of cave guano from eastern Borneo reveals tropical environments over the past 15, 000 cal yr BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 473: 73-81. doi: 10.1016/j.palaeo.2017.02.029
[34] Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science, 1967, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322
[35] Vogts A, Schefuß E, Badewien T, et al. n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions [J]. Organic Geochemistry, 2012, 47: 109-119. doi: 10.1016/j.orggeochem.2012.03.011
[36] Chikaraishi Y, Naraoka H, Poulson S R. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants [J]. Phytochemistry, 2004, 65(10): 1369-1381. doi: 10.1016/j.phytochem.2004.03.036
[37] Niedermeyer E M, Sessions A L, Feakins S J, et al. Hydroclimate of the western Indo-Pacific Warm Pool during the past 24, 000 years [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9402-9406. doi: 10.1073/pnas.1323585111
[38] Hu J F, Peng P A, Fang D Y, et al. No aridity in Sunda Land during the Last Glaciation: Evidence from molecular-isotopic stratigraphy of long-chain n-alkanes [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 201(3-4): 269-281. doi: 10.1016/S0031-0182(03)00613-8
[39] 崔子恒. 末次冰期以来巽他陆架东北部地区古环境与古植被变化[D]. 同济大学硕士学位论文, 2020.
CUI Ziheng. Paleo-vegetation and Paleo-environment in the Northeast of the Sunda Shelf since the Last Glacial Period[D]. Master Dissertation of Tongji University, 2020.
[40] 杨莹. 末次冰期以来巽他陆架植被与水文演化: 南海南部沉积物生物标志物记录[D]. 同济大学硕士学位论文, 2020.
YANG Ying. Vegetation and hydrological evolution on the Sunda Shelf since the last glaciation: sedimentary biomarker records from the Southern South China Sea[D]. Master Dissertation of Tongji University, 2020.
[41] Wicaksono S A, Russell J M, Bijaksana S. Compound-specific carbon isotope records of vegetation and hydrologic change in central Sulawesi, Indonesia, since 53, 000 yr BP [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 47-56. doi: 10.1016/j.palaeo.2015.04.016
[42] Russell J M, Vogel H, Konecky B L, et al. Glacial forcing of central Indonesian hydroclimate since 60, 000 y B. P [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5100-5105. doi: 10.1073/pnas.1402373111
[43] Hope G. Environmental change in the late Pleistocene and later Holocene at wanda site, soroako, South Sulawesi, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 129-145. doi: 10.1016/S0031-0182(01)00243-7
[44] Ruan Y M, Mohtadi M, Van Der Kaars S, et al. Differential hydro-climatic evolution of East Javanese ecosystems over the past 22, 000 years [J]. Quaternary Science Reviews, 2019, 218: 49-60. doi: 10.1016/j.quascirev.2019.06.015
[45] 孙湘君, 罗运利, 陈怀成. 中国第四纪深海孢粉研究进展[J]. 科学通报, 2003, 48(20):2155-2164 doi: 10.1007/BF03182842
SUN Xiangjun, LUO Yunli, CHEN Huaicheng. Deep-sea pollen research in China [J]. Chinese Science Bulletin, 2003, 48(20): 2155-2164. doi: 10.1007/BF03182842
[46] 赵辰辰, 王永波, 胥勤勉. 2.5Ma以来中国陆地孢粉记录反映的古气候变化[J]. 海洋地质与第四纪地质, 2020, 40(4):175-191
ZHAO Chenchen, WANG Yongbo, XU Qinmian. Climate changes on Chinese continent since 2.5 Ma: Evidence from fossil pollen records [J]. Marine Geology & Quaternary Geology, 2020, 40(4): 175-191.
[47] 戴璐, Yeok F S. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11):1147-1156 doi: 10.11867/j.issn.1001-8166.2017.11.1147
DAI Lu, Yeok F S. Was there savanna corridor on the exposed Sunda Shelf during the last glacial period? [J]. Advances in Earth Science, 2017, 32(11): 1147-1156. doi: 10.11867/j.issn.1001-8166.2017.11.1147
[48] Wang X M, Sun X J, Wang P X, et al. Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 278(1-4): 88-97. doi: 10.1016/j.palaeo.2009.04.008
[49] Sun X J, Li X, Luo Y L. Vegetation and climate on the Sunda shelf of the South China Sea during the last glaciation-Pollen results from station 17962 [J]. Acta Botanica Sinica, 2002, 44(6): 746-752.
[50] 李逊, 孙湘君. 南海南部末次冰期以来的孢粉记录及其气候意义[J]. 第四纪研究, 1999(6):526-535 doi: 10.3321/j.issn:1001-7410.1999.06.005
LI Xun, SUN Xiangjun. Palynological records since Last Glacial Maximum from a deep sea core in Southern South China Sea [J]. Quaternary Sciences, 1999(6): 526-535. doi: 10.3321/j.issn:1001-7410.1999.06.005
[51] 王晓梅. 巽他陆架近四万年以来的古植被及其古环境意义[D]. 同济大学博士学位论文, 2006.
WANG Xiaomei. Paleovegetation on the Sunda Shelf over the Last 40 ka and Its Paleoenvironmental Significance[D]. Doctor Dissertation of Tongji University, 2006.
[52] Luo C X, Haberle S, Zheng Z, et al. Environmental changes in the north-east Sunda region over the last 40 000 years [J]. Journal of Quaternary Science, 2019, 34(3): 245-257. doi: 10.1002/jqs.3093
[53] 杨再宝. 南海南部孢粉分布特征及其对周边地区4万年来气候环境演化历史的指示[D]. 中国科学院大学博士学位论文, 2019.
YANG Zaibao. Distribution characteristics of sporopollen in the Southern South China Sea and its implications for regional climate and environmental evolution since 40 ka[D]. Doctor Dissertation of University of Chinese Academy of Sciences, 2019.
[54] Hunt C O, Gilbertson D D, Rushworth G. A 50, 000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo [J]. Quaternary Science Reviews, 2012, 37: 61-80. doi: 10.1016/j.quascirev.2012.01.014
[55] Jones S E, Hunt C O, Reimer P J. A Late Pleistocene record of climate and environmental change from the northern and southern Kelabit Highlands of Sarawak, Malaysian Borneo [J]. Journal of Quaternary Science, 2014, 29(2): 105-122. doi: 10.1002/jqs.2682
[56] Anshari G, Kershaw A P, Van Der Kaars S, et al. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia [J]. Journal of Quaternary Science, 2004, 19(7): 637-655. doi: 10.1002/jqs.879
[57] Maloney B K, McCormac F G. A 30, 000-year pollen and radiocarbon record from highland sumatra as evidence for climate change [J]. Radiocarbon, 1995, 37(2): 181-190. doi: 10.1017/S0033822200030629
[58] Maloney B K. Pollen analytical evidence for early forest clearance in North Sumatra [J]. Nature, 1980, 287(5780): 324-326. doi: 10.1038/287324a0
[59] Taylor D, Yen O H, Sanderson P G, et al. Late quaternary peat formation and vegetation dynamics in a lowland tropical swamp; Nee Soon, Singapore [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 269-287. doi: 10.1016/S0031-0182(01)00249-8
[60] White J C, Penny D, Kealhofer L, et al. Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand [J]. Quaternary International, 2004, 113(1): 111-132. doi: 10.1016/j.quaint.2003.09.001
[61] Bian Y P, Jian Z M, Weng C Y, et al. A palynological and palaeoclimatological record from the southern Philippines since the Last Glacial Maximum [J]. Chinese Science Bulletin, 2011, 56(22): 2359-2365. doi: 10.1007/s11434-011-4573-1
[62] Flenley J R. Tropical forests under the climates of the last 30, 000 years [J]. Climatic Change, 1998, 39(2-3): 177-197.
[63] Dam R A C, Fluin J, Suparan P, et al. Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33, 000 yr B. P [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 147-183. doi: 10.1016/S0031-0182(01)00244-9
[64] Van Der Kaars S, Bassinot F, De Deckker P, et al. Changes in monsoon and ocean circulation and the vegetation cover of southwest Sumatra through the last 83, 000years: The record from marine core BAR94-42 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1-2): 52-78. doi: 10.1016/j.palaeo.2010.06.015
[65] Van Der Kaars S, Penny D, Tibby J, et al. Late quaternary palaeoecology, palynology and palaeolimnology of a tropical lowland swamp: Rawa Danau, West-Java, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 171(3-4): 185-212. doi: 10.1016/S0031-0182(01)00245-0
[66] Van Der Kaars S, Dam R. Vegetation and climate change in West-Java, Indonesia during the last 135, 000 years [J]. Quaternary International, 1997, 37: 67-71. doi: 10.1016/1040-6182(96)00002-X
[67] Wang X, Van Der Kaars S, Kershaw P, et al. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 147(3-4): 241-256. doi: 10.1016/S0031-0182(98)00169-2
[68] Van Der Kaars S, Wang X, Kershaw P, et al. A late quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 155(1-2): 135-153. doi: 10.1016/S0031-0182(99)00098-X
[69] Raes N, Cannon C H, Hijmans R J, et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16790-16795. doi: 10.1073/pnas.1403053111
[70] Ratnam J, Tomlinson K W, Rasquinha D N, et al. Savannahs of Asia: Antiquity, biogeography, and an uncertain future [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371(1703): 20150305. doi: 10.1098/rstb.2015.0305
[71] Denton G H, Alley R B, Comer G C, et al. The role of seasonality in abrupt climate change [J]. Quaternary Science Reviews, 2005, 24(10-11): 1159-1182. doi: 10.1016/j.quascirev.2004.12.002
[72] Shakun J D, Clark P U, He F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation [J]. Nature, 2012, 484(7392): 49-54. doi: 10.1038/nature10915
[73] Denniston R F, Wyrwoll K H, Asmerom Y, et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period [J]. Quaternary Science Reviews, 2013, 72: 159-168. doi: 10.1016/j.quascirev.2013.04.012
[74] Moerman J W, Cobb K M, Adkins J F, et al. Diurnal to interannual rainfall δ18O variations in northern Borneo driven by regional hydrology [J]. Earth and Planetary Science Letters, 2013, 369-370: 108-119. doi: 10.1016/j.jpgl.2013.03.014
[75] Sadekov A Y, Ganeshram R, Pichevin L, et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state [J]. Nature Communications, 2013, 4(1): 2692. doi: 10.1038/ncomms3692
[76] De Deckker P, Tapper N J, Van Der Kaars S. The status of the Indo-Pacific Warm Pool and adjacent land at the Last Glacial Maximum [J]. Global and Planetary Change, 2003, 35(1-2): 25-35. doi: 10.1016/S0921-8181(02)00089-9
[77] Sun X J, Li X, Luo Y L, et al. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(3-4): 301-316. doi: 10.1016/S0031-0182(00)00078-X