非洲东南纳塔尔海谷MIS12期以来的物质来源和古气候变化:IODP U1474孔黏土矿物记录

宋濠男, 张泳聪, 韩喜彬, 胡栟铫, 龙飞江. 非洲东南纳塔尔海谷MIS12期以来的物质来源和古气候变化:IODP U1474孔黏土矿物记录[J]. 海洋地质与第四纪地质, 2021, 41(4): 142-156. doi: 10.16562/j.cnki.0256-1492.2021042001
引用本文: 宋濠男, 张泳聪, 韩喜彬, 胡栟铫, 龙飞江. 非洲东南纳塔尔海谷MIS12期以来的物质来源和古气候变化:IODP U1474孔黏土矿物记录[J]. 海洋地质与第四纪地质, 2021, 41(4): 142-156. doi: 10.16562/j.cnki.0256-1492.2021042001
SONG Haonan, ZHANG Yongcong, HAN Xibin, HU Bingyao, LONG Feijiang. Provenance and climatic changes of the Natal Valley, Southeastern Africa since MIS12: the clay minerals records from Hole U1474, IODP361[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 142-156. doi: 10.16562/j.cnki.0256-1492.2021042001
Citation: SONG Haonan, ZHANG Yongcong, HAN Xibin, HU Bingyao, LONG Feijiang. Provenance and climatic changes of the Natal Valley, Southeastern Africa since MIS12: the clay minerals records from Hole U1474, IODP361[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 142-156. doi: 10.16562/j.cnki.0256-1492.2021042001

非洲东南纳塔尔海谷MIS12期以来的物质来源和古气候变化:IODP U1474孔黏土矿物记录

  • 基金项目: 南极专项“南极重点海域对气候变化的响应和影响(IRASCC2020-2022)”;极地考察业务化与科研项目“南大洋重点海域基础环境与海洋生物多样性观监测——底质环境”;自然资源部第二海洋研究所基本科研业务费专项资金资助 “临安基地样品馆柱状沉积物预处理系统建设”(YJJC2001),“杭州西湖的形成与演化——基于自然和人文要素的研究”(YJJC2003);上海交通大学“深蓝计划”基金“深海资源和沉积物的定量化激光诱导分解光谱方法及仪器研制”(SL2002)
详细信息
    作者简介: 宋濠男(1996—),男,硕士研究生,主要从事海洋地质研究,E-mail:494722509@qq.com
    通讯作者: 韩喜彬(1976—),男,副研究员,主要从事海洋地质研究,E-mail:hanxibin@sio.org.cn
  • 中图分类号: P736.21

Provenance and climatic changes of the Natal Valley, Southeastern Africa since MIS12: the clay minerals records from Hole U1474, IODP361

More Information
  • 氧同位素(marine isotope stage,MIS)MIS12期以来的气候环境变化对非洲东南部古人类的迁徙和演化影响甚远。非洲东南外海纳塔尔海谷U1474孔由IODP 361航次获取,通过X射线衍射法(XRD)对前20 m共149个样品中的黏土矿物组成进行测试分析,结果显示自MIS12期以来U1474站位的黏土矿物组成以蒙脱石为主,平均含量为39.23%;其次为伊利石,平均含量为26.11%;高岭石平均含量为17.79%;绿泥石含量最低,平均含量为17.19%;伊利石的结晶度较好,为0.35°Δ2θ(<0.4°Δ2θ),而且化学指数较低,为0.30(<0.43)。其组合特征意味着其主要由非洲东南部三大河流携带输入(图盖拉河、林波波河和赞比西河)。U1474孔黏土矿物组成和参数变化自MIS12期以来的变化指示了非洲东南部的气候变化,其变化有着明显的冰期-间冰期旋回特征,可划分为5个阶段,每个阶段冰期寒冷干燥,间冰期相对温暖湿润。在每个时期呈现出一定的亚轨道的气候波动异常,常有冷暖、干湿波动的情形,这可能受到区域大气环流和临近海流(如厄加勒斯流)的影响。

  • 加载中
  • 图 1  U1474孔位置及洋流示意图[20]

    Figure 1. 

    图 2  U1474孔地层年代框架

    Figure 2. 

    图 3  U1474孔黏土矿物X-射线典型衍射图谱(样品深度:1492 ~1494 cm)

    Figure 3. 

    图 4  U1474孔黏土矿物之间相关性

    Figure 4. 

    图 5  MIS12期以来U1474孔黏土矿物组合特征及其变化

    Figure 5. 

    图 6  U1474站位黏土矿物物源分析三角图

    Figure 6. 

    图 7  U1474孔伊利石化学指数频谱分析图

    Figure 7. 

    图 8  U1474孔不同频率滤波曲线与轨道参数曲线对比

    Figure 8. 

    图 9  U1474孔黏土矿物组成、XRF扫描Fe/K元素比值、全球海平面变化、 MD962077孔的海表温度总有机碳、南纬30°太阳光照及地球公转轨道偏心率变化对比

    Figure 9. 

    表 1  U1474孔的主要黏土矿物含量及其矿物学特征

    Table 1.  Contents and mineralogical characteristic of major clay minerals in Hole U1474

    黏土矿物百分含量/%伊利石结晶度/(°Δ2θ伊利石化学指数
    蒙脱石伊利石高岭石绿泥石
    最大值55.3436.2123.0722.880.510.53
    最小值27.7714.0610.869.670.280.13
    平均值39.2326.1117.7917.190.350.30
    下载: 导出CSV
  • [1]

    Kirtman B, Power S B, Adedoyin J A, et al. Near-term climate change: projections and predictability[M]//IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013: 953-1028.

    [2]

    Castañeda I S, Werne J P, Johnson T C. Wet and arid phases in the southeast African tropics since the Last Glacial Maximum [J]. Geology, 2007, 35(9): 823-826. doi: 10.1130/G23916A.1

    [3]

    Beuning K R M, Zimmerman K A, Ivory S J, et al. Vegetation response to glacial–interglacial climate variability near Lake Malawi in the southern African tropics [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303(1-4): 81-92. doi: 10.1016/j.palaeo.2010.01.025

    [4]

    Brown E T, Johnson T C, Scholz C A, et al. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years [J]. Geophysical Research Letters, 2007, 34(20): L20702. doi: 10.1029/2007GL031240

    [5]

    Dupont L. Orbital scale vegetation change in Africa [J]. Quaternary Science Reviews, 2011, 30(25-26): 3589-3602. doi: 10.1016/j.quascirev.2011.09.019

    [6]

    Compton J S. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa [J]. Quaternary Science Reviews, 2011, 30(5-6): 506-527. doi: 10.1016/j.quascirev.2010.12.012

    [7]

    Ziegler M, Simon M H, Hall I R, et al. Development of Middle Stone Age innovation linked to rapid climate change [J]. Nature Communications, 2013, 4: 1905. doi: 10.1038/ncomms2897

    [8]

    Konecky B L, Russell J M, Johnson T C, et al. Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 318-326. doi: 10.1016/j.jpgl.2011.10.020

    [9]

    Yin Q Z, Berger A. Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event [J]. Nature Geoscience, 2010, 3(4): 243-246. doi: 10.1038/ngeo771

    [10]

    Bintanja R, Van De Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975

    [11]

    Lambeck K, Esat T M, Potter E K. Links between climate and sea levels for the past three million years [J]. Nature, 2002, 419(6903): 199-206. doi: 10.1038/nature01089

    [12]

    Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core [J]. Nature, 2004, 429(6992): 623-628. doi: 10.1038/nature02599

    [13]

    Lüthi D, Floch M L, Bereiter B, et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present [J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949

    [14]

    Chen H J, Xu Z K, Clift P D, et al. Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea [J]. Journal of Asian Earth Sciences, 2019, 174: 11-22. doi: 10.1016/j.jseaes.2018.10.012

    [15]

    Martin A K, Goodlad S W, Salmon D A. Sedimentary basin in-fill in the northernmost Natal Valley, hiatus development and Agulhas Current palaeo-oceanography [J]. Journal of the Geological Society, 1982, 139(2): 183-201. doi: 10.1144/gsjgs.139.2.0183

    [16]

    Fairbanks D H K, Benn G A. Identifying regional landscapes for conservation planning: a case study from KwaZulu-Natal, South Africa [J]. Landscape and Urban Planning, 2000, 50(4): 237-257. doi: 10.1016/S0169-2046(00)00068-2

    [17]

    Bard E, Rickaby R E M. Migration of the subtropical front as a modulator of glacial climate [J]. Nature, 2009, 460(7253): 380-383. doi: 10.1038/nature08189

    [18]

    Simon M H, Ziegler M, Bosmans J, et al. Eastern South African hydroclimate over the past 270, 000 years [J]. Scientific Reports, 2015, 5: 18153. doi: 10.1038/srep18153

    [19]

    Dupont L M, Caley T, Kim J H, et al. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean [J]. Climate of the Past, 2011, 7(4): 1209-1224. doi: 10.5194/cp-7-1209-2011

    [20]

    Hall I R, Hemming S R, LeVay L J, et al. Site U1474[R]//Proceedings of the International Ocean Discovery Program Volume 361. College Station: TX: International Ocean Discovery Program, 2017.

    [21]

    Reason C J C, Landman W, Tennant W. Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean [J]. Bulletin of the American Meteorological Society, 2006, 87(7): 941-956. doi: 10.1175/BAMS-87-7-941

    [22]

    张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4):422-427 doi: 10.11867/j.issn.1001-8166.2016.04.0422.

    ZHANG Hucai. Inspirations from IODP Expedition 361 [J]. Advances in Earth Science, 2016, 31(4): 422-427. doi: 10.11867/j.issn.1001-8166.2016.04.0422.

    [23]

    Liu Z F, Colin C, Huang W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05005.

    [24]

    Liu Z F, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years [J]. Marine Geology, 2003, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5

    [25]

    Gingele F X. Holocene climatic optimum in Southwest Africa—evidence from the marine clay mineral record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1-4): 77-87. doi: 10.1016/0031-0182(96)00076-4

    [26]

    Dingle R V, Goodlad S W, Martin A K. Bathymetry and stratigraphy of the northern Natal Valley (SW Indian Ocean): a preliminary account [J]. Marine Geology, 1978, 28(1-2): 89-106. doi: 10.1016/0025-3227(78)90099-3

    [27]

    Wiles E, Green A, Watkeys M, et al. The evolution of the Tugela canyon and submarine fan: a complex interaction between margin erosion and bottom current sweeping, southwest Indian Ocean, South Africa [J]. Marine and Petroleum Geology, 2013, 44: 60-70. doi: 10.1016/j.marpetgeo.2013.03.012

    [28]

    Beal L M, Bryden H L. The velocity and vorticity structure of the Agulhas Current at 32°S [J]. Journal of Geophysical Research: Oceans, 1999, 104(C3): 5151-5176. doi: 10.1029/1998JC900056

    [29]

    Lutjeharms J R E. The Agulhas Current[M]. Berlin: Springer, 2006.

    [30]

    Beal L M, De Ruijter W P M, Biastoch A, et al. On the role of the Agulhas system in ocean circulation and climate [J]. Nature, 2011, 472(7344): 429-436. doi: 10.1038/nature09983

    [31]

    Gruetzner J, Espejo F J J, Lathika N, et al. A new seismic stratigraphy in the Indian‐Atlantic Ocean gateway resembles major Paleo‐oceanographic changes of the last 7 Ma [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 339-358. doi: 10.1029/2018GC007668

    [32]

    Schlüter P, Uenzelmann-Neben G. Indications for bottom current activity since Eocene times: the climate and ocean gateway archive of the Transkei Basin, South Africa [J]. Global and Planetary Change, 2008, 60(3-4): 416-428. doi: 10.1016/j.gloplacha.2007.07.002

    [33]

    Croudace I W, Rindby A, Rothwell R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner [J]. Geological Society, London, Special Publications, 2006, 267(1): 51-63. doi: 10.1144/GSL.SP.2006.267.01.04

    [34]

    Babin D P, Franzese A M, Hemming S R, et al. Data report: X-ray fluorescence core scanning of IODP Site U1474 sediments, Natal Valley, Southwest Indian Ocean, Expedition 361[R]//Proceedings of the International Ocean Discovery Program Volume 361. College Station, TX: International Ocean Discovery Program, 2020.

    [35]

    中华人民共和国国家质量监督检疫总局. GB/T12763.8-2007 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2007: 88.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T12763.8-2007 Specifications for oceanographic survey—Part 8: Marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2007: 88.

    [36]

    Zhao S H, Liu Z F, Colin C, et al. Responses of the East Asian summer monsoon in the low‐latitude South China Sea to high‐latitude millennial‐scale climatic changes during the last glaciation: evidence from a high‐resolution clay mineralogical record [J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 745-765. doi: 10.1029/2017PA003235

    [37]

    Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    [38]

    Kübler B. Les argiles, indicateurs de métamorphisme [J]. Revue de l'Institut Francaise du Petrole, 1964, 19: 1093-1113.

    [39]

    Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.

    [40]

    周怀阳, 叶瑛, 沈忠悦. 南海南部沉积物中黏土矿物组成变化及其古沉积信息记录初探[J]. 海洋学报, 2004, 26(2):52-60

    ZHOU Huaiyang, YE Ying, SHEN Zhongyue. On the variation of clay minerals and their paleosedimentary records in the sediment cores in the southern area of the South China Sea [J]. Acta Oceanologica Sinica, 2004, 26(2): 52-60.

    [41]

    蓝先洪, 张志珣, 李日辉, 等. 长江口外表层沉积物黏土矿物分布特征[J]. 海洋地质前沿, 2011, 27(11):1-7

    LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Distribution of clay minerals in surface sediments off Yangtze River estuary [J]. Marine Geology Letters, 2011, 27(11): 1-7.

    [42]

    孙庆峰, 陈发虎, Colin C, 等. 粘土矿物在气候环境变化研究中的应用进展[J]. 矿物学报, 2011, 31(1):146-152

    SUN Qingfeng, CHEN Fahu, Colin C, et al. Application progress of clay minerals in the researches of climate and environment [J]. Acta Mineralogica Sinica, 2011, 31(1): 146-152.

    [43]

    王颖, 乔淑卿, 葛晨东, 等. 预处理对海洋黏土矿物XRD测试结果的影响[J]. 海洋科学进展, 2018, 36(2):242-252

    WANG Ying, QIAO Shuqing, GE Chendong, et al. The influence of pretreatment on the XRD analysis results of clay minerals in marine sediment [J]. Advances in Marine Science, 2018, 36(2): 242-252.

    [44]

    Robert C, Diester-Haass L, Paturel J. Clay mineral assemblages, siliciclastic input and paleoproductivity at ODP Site 1085 off Southwest Africa: a late Miocene–early Pliocene history of Orange river discharges and Benguela current activity, and their relation to global sea level change [J]. Marine Geology, 2005, 216(4): 221-238. doi: 10.1016/j.margeo.2005.02.024

    [45]

    Schüürman J, Hahn A, Zabel M. In search of sediment deposits from the Limpopo (Delagoa Bight, southern Africa): deciphering the catchment provenance of coastal sediments [J]. Sedimentary Geology, 2019, 380: 94-104. doi: 10.1016/j.sedgeo.2018.11.012

    [46]

    Cass A, Johnston M A. Physical and clay mineralogical properties of some Natal and eastern Transvaal soils [J]. South African Journal of Plant and Soil, 1985, 2(2): 79-84. doi: 10.1080/02571862.1985.10634141

    [47]

    Setti M, Lόpez-Galindo A, Padoan M, et al. Clay mineralogy in southern Africa river muds [J]. Clay Minerals, 2014, 49(5): 717-733. doi: 10.1180/claymin.2014.049.5.08

    [48]

    Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the eocene-oligocene climate transition [J]. Science, 2009, 323(5918): 1187-1190. doi: 10.1126/science.1166368

    [49]

    Nace T E, Baker P A, Dwyer G S, et al. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415: 3-13. doi: 10.1016/j.palaeo.2014.05.030

    [50]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.

    [51]

    Simon M H, Arthur K L, Hall I R, et al. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway [J]. Earth and Planetary Science Letters, 2013, 383: 101-112. doi: 10.1016/j.jpgl.2013.09.035

    [52]

    Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling [J]. Geophysical Research Letters, 2006, 33(1): L01702.

    [53]

    Schefuß E, Kuhlmann H, Mollenhauer G, et al. Forcing of wet phases in southeast Africa over the past 17, 000 years [J]. Nature, 2011, 480(7378): 509-512. doi: 10.1038/nature10685

    [54]

    Wang Y V, Larsen T, Leduc G, et al. What does leaf wax δD from a mixed C3/C4 vegetation region tell us? [J]. Geochimica et Cosmochimica Acta, 2013, 111: 128-139. doi: 10.1016/j.gca.2012.10.016

    [55]

    Lewis S C, LeGrande A N, Kelley M, et al. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events [J]. Climate of the Past, 2010, 6(3): 325-343. doi: 10.5194/cp-6-325-2010

    [56]

    Vellinga M, Wood R A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation [J]. Climatic Change, 2002, 54(3): 251-267. doi: 10.1023/A:1016168827653

    [57]

    Stouffer R J, Yin J, Gregory J M, et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes [J]. Journal of Climate, 2006, 19(8): 1365-1387. doi: 10.1175/JCLI3689.1

    [58]

    Reason C J C, Mulenga H. Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean [J]. International Journal of Climatology, 1999, 19(15): 1651-1673. doi: 10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U

    [59]

    Reason C J C. Evidence for the influence of the Agulhas Current on regional atmospheric circulation patterns [J]. Journal of Climate, 2001, 14(12): 2769-2778. doi: 10.1175/1520-0442(2001)014<2769:EFTIOT>2.0.CO;2

  • 加载中

(9)

(1)

计量
  • 文章访问数:  1591
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2021-04-20
修回日期:  2021-06-14
刊出日期:  2021-08-28

目录