Provenance and climatic changes of the Natal Valley, Southeastern Africa since MIS12: the clay minerals records from Hole U1474, IODP361
-
摘要:
氧同位素(marine isotope stage,MIS)MIS12期以来的气候环境变化对非洲东南部古人类的迁徙和演化影响甚远。非洲东南外海纳塔尔海谷U1474孔由IODP 361航次获取,通过X射线衍射法(XRD)对前20 m共149个样品中的黏土矿物组成进行测试分析,结果显示自MIS12期以来U1474站位的黏土矿物组成以蒙脱石为主,平均含量为39.23%;其次为伊利石,平均含量为26.11%;高岭石平均含量为17.79%;绿泥石含量最低,平均含量为17.19%;伊利石的结晶度较好,为0.35°Δ2θ(<0.4°Δ2θ),而且化学指数较低,为0.30(<0.43)。其组合特征意味着其主要由非洲东南部三大河流携带输入(图盖拉河、林波波河和赞比西河)。U1474孔黏土矿物组成和参数变化自MIS12期以来的变化指示了非洲东南部的气候变化,其变化有着明显的冰期-间冰期旋回特征,可划分为5个阶段,每个阶段冰期寒冷干燥,间冰期相对温暖湿润。在每个时期呈现出一定的亚轨道的气候波动异常,常有冷暖、干湿波动的情形,这可能受到区域大气环流和临近海流(如厄加勒斯流)的影响。
Abstract:Climatic and environmental changes have rendered great impacts on the migration and evolution of hominid in Southeast Africa, since the Marine Isotope Stage 12(MIS12). Clay mineral assemblages, contents and mineralogy of 149 sediment samples collected from the Hole U1474 by the Expedition 361 of the International Ocean Discovery Program(IODP), have been analyzed and measured with X-ray diffraction(XRD). The hole is located in the Natal Valley of Southeast Africa, The results show that the clay minerals are mainly composed of smectite(39.23% on average), illite (26.11% on average), kaolinite(17.79% on average)and minor chlorite(17.19% on average). The crystallinity of illite in all samples are high and on an average of 0.35°Δ2θ(<0.4°N 2θ), and the illite chemical indices are as low of 0.30(<0.43 on average. The clay mineral assemblages of the Hole U1474 suggest a riverine source mainly derived from the three major rivers (the Tugela River, the Limpopo River and the Zambezi River)in Southeast Africa. The variation of clay mineral composition and related parameters of the Hole U1474 indicates that the climate changes in the Southeast Africa since MIS12 is obviously characterized by glacial-interglacial cycles and can be divided into five stages. Each stage is cold and dry during the glacial period, and relatively warm and humid during the interglacial period. In each period, there are some abnormal suborbital climate fluctuations, such as cold and warm, dry and wet fluctuations, affected by regional atmospheric circulation and adjacent ocean currents, such as the Agulhas Current.
-
Key words:
- provenance /
- paleoclimate /
- clay minerals /
- glacial-interglacial cycle /
- MIS12 Stage /
- Natal Valley
-
图 1 U1474孔位置及洋流示意图[20]
Figure 1.
表 1 U1474孔的主要黏土矿物含量及其矿物学特征
Table 1. Contents and mineralogical characteristic of major clay minerals in Hole U1474
黏土矿物百分含量/% 伊利石结晶度/(°Δ2θ) 伊利石化学指数 蒙脱石 伊利石 高岭石 绿泥石 最大值 55.34 36.21 23.07 22.88 0.51 0.53 最小值 27.77 14.06 10.86 9.67 0.28 0.13 平均值 39.23 26.11 17.79 17.19 0.35 0.30 -
[1] Kirtman B, Power S B, Adedoyin J A, et al. Near-term climate change: projections and predictability[M]//IPCC. Climate Change 2013: The Physical Science Basis. Cambridge: Cambridge University Press, 2013: 953-1028.
[2] Castañeda I S, Werne J P, Johnson T C. Wet and arid phases in the southeast African tropics since the Last Glacial Maximum [J]. Geology, 2007, 35(9): 823-826. doi: 10.1130/G23916A.1
[3] Beuning K R M, Zimmerman K A, Ivory S J, et al. Vegetation response to glacial–interglacial climate variability near Lake Malawi in the southern African tropics [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 303(1-4): 81-92. doi: 10.1016/j.palaeo.2010.01.025
[4] Brown E T, Johnson T C, Scholz C A, et al. Abrupt change in tropical African climate linked to the bipolar seesaw over the past 55,000 years [J]. Geophysical Research Letters, 2007, 34(20): L20702. doi: 10.1029/2007GL031240
[5] Dupont L. Orbital scale vegetation change in Africa [J]. Quaternary Science Reviews, 2011, 30(25-26): 3589-3602. doi: 10.1016/j.quascirev.2011.09.019
[6] Compton J S. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa [J]. Quaternary Science Reviews, 2011, 30(5-6): 506-527. doi: 10.1016/j.quascirev.2010.12.012
[7] Ziegler M, Simon M H, Hall I R, et al. Development of Middle Stone Age innovation linked to rapid climate change [J]. Nature Communications, 2013, 4: 1905. doi: 10.1038/ncomms2897
[8] Konecky B L, Russell J M, Johnson T C, et al. Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa [J]. Earth and Planetary Science Letters, 2011, 312(3-4): 318-326. doi: 10.1016/j.jpgl.2011.10.020
[9] Yin Q Z, Berger A. Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event [J]. Nature Geoscience, 2010, 3(4): 243-246. doi: 10.1038/ngeo771
[10] Bintanja R, Van De Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years [J]. Nature, 2005, 437(7055): 125-128. doi: 10.1038/nature03975
[11] Lambeck K, Esat T M, Potter E K. Links between climate and sea levels for the past three million years [J]. Nature, 2002, 419(6903): 199-206. doi: 10.1038/nature01089
[12] Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core [J]. Nature, 2004, 429(6992): 623-628. doi: 10.1038/nature02599
[13] Lüthi D, Floch M L, Bereiter B, et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present [J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949
[14] Chen H J, Xu Z K, Clift P D, et al. Orbital-scale evolution of the Indian summer monsoon since 1.2 Ma: Evidence from clay mineral records at IODP Expedition 355 Site U1456 in the eastern Arabian Sea [J]. Journal of Asian Earth Sciences, 2019, 174: 11-22. doi: 10.1016/j.jseaes.2018.10.012
[15] Martin A K, Goodlad S W, Salmon D A. Sedimentary basin in-fill in the northernmost Natal Valley, hiatus development and Agulhas Current palaeo-oceanography [J]. Journal of the Geological Society, 1982, 139(2): 183-201. doi: 10.1144/gsjgs.139.2.0183
[16] Fairbanks D H K, Benn G A. Identifying regional landscapes for conservation planning: a case study from KwaZulu-Natal, South Africa [J]. Landscape and Urban Planning, 2000, 50(4): 237-257. doi: 10.1016/S0169-2046(00)00068-2
[17] Bard E, Rickaby R E M. Migration of the subtropical front as a modulator of glacial climate [J]. Nature, 2009, 460(7253): 380-383. doi: 10.1038/nature08189
[18] Simon M H, Ziegler M, Bosmans J, et al. Eastern South African hydroclimate over the past 270, 000 years [J]. Scientific Reports, 2015, 5: 18153. doi: 10.1038/srep18153
[19] Dupont L M, Caley T, Kim J H, et al. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean [J]. Climate of the Past, 2011, 7(4): 1209-1224. doi: 10.5194/cp-7-1209-2011
[20] Hall I R, Hemming S R, LeVay L J, et al. Site U1474[R]//Proceedings of the International Ocean Discovery Program Volume 361. College Station: TX: International Ocean Discovery Program, 2017.
[21] Reason C J C, Landman W, Tennant W. Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean [J]. Bulletin of the American Meteorological Society, 2006, 87(7): 941-956. doi: 10.1175/BAMS-87-7-941
[22] 张虎才. 参加国际大洋发现计划IODP 361的启示[J]. 地球科学进展, 2016, 31(4):422-427 doi: 10.11867/j.issn.1001-8166.2016.04.0422.
ZHANG Hucai. Inspirations from IODP Expedition 361 [J]. Advances in Earth Science, 2016, 31(4): 422-427. doi: 10.11867/j.issn.1001-8166.2016.04.0422.
[23] Liu Z F, Colin C, Huang W, et al. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins [J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5): Q05005.
[24] Liu Z F, Trentesaux A, Clemens S C, et al. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years [J]. Marine Geology, 2003, 201(1-3): 133-146. doi: 10.1016/S0025-3227(03)00213-5
[25] Gingele F X. Holocene climatic optimum in Southwest Africa—evidence from the marine clay mineral record [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 122(1-4): 77-87. doi: 10.1016/0031-0182(96)00076-4
[26] Dingle R V, Goodlad S W, Martin A K. Bathymetry and stratigraphy of the northern Natal Valley (SW Indian Ocean): a preliminary account [J]. Marine Geology, 1978, 28(1-2): 89-106. doi: 10.1016/0025-3227(78)90099-3
[27] Wiles E, Green A, Watkeys M, et al. The evolution of the Tugela canyon and submarine fan: a complex interaction between margin erosion and bottom current sweeping, southwest Indian Ocean, South Africa [J]. Marine and Petroleum Geology, 2013, 44: 60-70. doi: 10.1016/j.marpetgeo.2013.03.012
[28] Beal L M, Bryden H L. The velocity and vorticity structure of the Agulhas Current at 32°S [J]. Journal of Geophysical Research: Oceans, 1999, 104(C3): 5151-5176. doi: 10.1029/1998JC900056
[29] Lutjeharms J R E. The Agulhas Current[M]. Berlin: Springer, 2006.
[30] Beal L M, De Ruijter W P M, Biastoch A, et al. On the role of the Agulhas system in ocean circulation and climate [J]. Nature, 2011, 472(7344): 429-436. doi: 10.1038/nature09983
[31] Gruetzner J, Espejo F J J, Lathika N, et al. A new seismic stratigraphy in the Indian‐Atlantic Ocean gateway resembles major Paleo‐oceanographic changes of the last 7 Ma [J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 339-358. doi: 10.1029/2018GC007668
[32] Schlüter P, Uenzelmann-Neben G. Indications for bottom current activity since Eocene times: the climate and ocean gateway archive of the Transkei Basin, South Africa [J]. Global and Planetary Change, 2008, 60(3-4): 416-428. doi: 10.1016/j.gloplacha.2007.07.002
[33] Croudace I W, Rindby A, Rothwell R G. ITRAX: description and evaluation of a new multi-function X-ray core scanner [J]. Geological Society, London, Special Publications, 2006, 267(1): 51-63. doi: 10.1144/GSL.SP.2006.267.01.04
[34] Babin D P, Franzese A M, Hemming S R, et al. Data report: X-ray fluorescence core scanning of IODP Site U1474 sediments, Natal Valley, Southwest Indian Ocean, Expedition 361[R]//Proceedings of the International Ocean Discovery Program Volume 361. College Station, TX: International Ocean Discovery Program, 2020.
[35] 中华人民共和国国家质量监督检疫总局. GB/T12763.8-2007 海洋调查规范 第8部分: 海洋地质地球物理调查[S]. 北京: 中国标准出版社, 2007: 88.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T12763.8-2007 Specifications for oceanographic survey—Part 8: Marine geology and geophysics survey[S]. Beijing: Standards Press of China, 2007: 88.
[36] Zhao S H, Liu Z F, Colin C, et al. Responses of the East Asian summer monsoon in the low‐latitude South China Sea to high‐latitude millennial‐scale climatic changes during the last glaciation: evidence from a high‐resolution clay mineralogical record [J]. Paleoceanography and Paleoclimatology, 2018, 33(7): 745-765. doi: 10.1029/2017PA003235
[37] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans [J]. Geological Society of America Bulletin, 1965, 76(7): 803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[38] Kübler B. Les argiles, indicateurs de métamorphisme [J]. Revue de l'Institut Francaise du Petrole, 1964, 19: 1093-1113.
[39] Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.
[40] 周怀阳, 叶瑛, 沈忠悦. 南海南部沉积物中黏土矿物组成变化及其古沉积信息记录初探[J]. 海洋学报, 2004, 26(2):52-60
ZHOU Huaiyang, YE Ying, SHEN Zhongyue. On the variation of clay minerals and their paleosedimentary records in the sediment cores in the southern area of the South China Sea [J]. Acta Oceanologica Sinica, 2004, 26(2): 52-60.
[41] 蓝先洪, 张志珣, 李日辉, 等. 长江口外表层沉积物黏土矿物分布特征[J]. 海洋地质前沿, 2011, 27(11):1-7
LAN Xianhong, ZHANG Zhixun, LI Rihui, et al. Distribution of clay minerals in surface sediments off Yangtze River estuary [J]. Marine Geology Letters, 2011, 27(11): 1-7.
[42] 孙庆峰, 陈发虎, Colin C, 等. 粘土矿物在气候环境变化研究中的应用进展[J]. 矿物学报, 2011, 31(1):146-152
SUN Qingfeng, CHEN Fahu, Colin C, et al. Application progress of clay minerals in the researches of climate and environment [J]. Acta Mineralogica Sinica, 2011, 31(1): 146-152.
[43] 王颖, 乔淑卿, 葛晨东, 等. 预处理对海洋黏土矿物XRD测试结果的影响[J]. 海洋科学进展, 2018, 36(2):242-252
WANG Ying, QIAO Shuqing, GE Chendong, et al. The influence of pretreatment on the XRD analysis results of clay minerals in marine sediment [J]. Advances in Marine Science, 2018, 36(2): 242-252.
[44] Robert C, Diester-Haass L, Paturel J. Clay mineral assemblages, siliciclastic input and paleoproductivity at ODP Site 1085 off Southwest Africa: a late Miocene–early Pliocene history of Orange river discharges and Benguela current activity, and their relation to global sea level change [J]. Marine Geology, 2005, 216(4): 221-238. doi: 10.1016/j.margeo.2005.02.024
[45] Schüürman J, Hahn A, Zabel M. In search of sediment deposits from the Limpopo (Delagoa Bight, southern Africa): deciphering the catchment provenance of coastal sediments [J]. Sedimentary Geology, 2019, 380: 94-104. doi: 10.1016/j.sedgeo.2018.11.012
[46] Cass A, Johnston M A. Physical and clay mineralogical properties of some Natal and eastern Transvaal soils [J]. South African Journal of Plant and Soil, 1985, 2(2): 79-84. doi: 10.1080/02571862.1985.10634141
[47] Setti M, Lόpez-Galindo A, Padoan M, et al. Clay mineralogy in southern Africa river muds [J]. Clay Minerals, 2014, 49(5): 717-733. doi: 10.1180/claymin.2014.049.5.08
[48] Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the eocene-oligocene climate transition [J]. Science, 2009, 323(5918): 1187-1190. doi: 10.1126/science.1166368
[49] Nace T E, Baker P A, Dwyer G S, et al. The role of North Brazil Current transport in the paleoclimate of the Brazilian Nordeste margin and paleoceanography of the western tropical Atlantic during the late Quaternary [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 415: 3-13. doi: 10.1016/j.palaeo.2014.05.030
[50] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[51] Simon M H, Arthur K L, Hall I R, et al. Millennial-scale Agulhas Current variability and its implications for salt-leakage through the Indian–Atlantic Ocean Gateway [J]. Earth and Planetary Science Letters, 2013, 383: 101-112. doi: 10.1016/j.jpgl.2013.09.035
[52] Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling [J]. Geophysical Research Letters, 2006, 33(1): L01702.
[53] Schefuß E, Kuhlmann H, Mollenhauer G, et al. Forcing of wet phases in southeast Africa over the past 17, 000 years [J]. Nature, 2011, 480(7378): 509-512. doi: 10.1038/nature10685
[54] Wang Y V, Larsen T, Leduc G, et al. What does leaf wax δD from a mixed C3/C4 vegetation region tell us? [J]. Geochimica et Cosmochimica Acta, 2013, 111: 128-139. doi: 10.1016/j.gca.2012.10.016
[55] Lewis S C, LeGrande A N, Kelley M, et al. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events [J]. Climate of the Past, 2010, 6(3): 325-343. doi: 10.5194/cp-6-325-2010
[56] Vellinga M, Wood R A. Global climatic impacts of a collapse of the Atlantic thermohaline circulation [J]. Climatic Change, 2002, 54(3): 251-267. doi: 10.1023/A:1016168827653
[57] Stouffer R J, Yin J, Gregory J M, et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes [J]. Journal of Climate, 2006, 19(8): 1365-1387. doi: 10.1175/JCLI3689.1
[58] Reason C J C, Mulenga H. Relationships between South African rainfall and SST anomalies in the southwest Indian Ocean [J]. International Journal of Climatology, 1999, 19(15): 1651-1673. doi: 10.1002/(SICI)1097-0088(199912)19:15<1651::AID-JOC439>3.0.CO;2-U
[59] Reason C J C. Evidence for the influence of the Agulhas Current on regional atmospheric circulation patterns [J]. Journal of Climate, 2001, 14(12): 2769-2778. doi: 10.1175/1520-0442(2001)014<2769:EFTIOT>2.0.CO;2