基于微地貌特征的西太平洋菲律宾海海底稳定性评价

刘娅楠, 贾超, 胡邦琦, 刘森, 宋维宇, 杨霄. 基于微地貌特征的西太平洋菲律宾海海底稳定性评价[J]. 海洋地质与第四纪地质, 2022, 42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
引用本文: 刘娅楠, 贾超, 胡邦琦, 刘森, 宋维宇, 杨霄. 基于微地貌特征的西太平洋菲律宾海海底稳定性评价[J]. 海洋地质与第四纪地质, 2022, 42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
LIU Yanan, JIA Chao, HU Bangqi, LIU Sen, SONG Weiyu, YANG Xiao. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801
Citation: LIU Yanan, JIA Chao, HU Bangqi, LIU Sen, SONG Weiyu, YANG Xiao. Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 214-221. doi: 10.16562/j.cnki.0256-1492.2020121801

基于微地貌特征的西太平洋菲律宾海海底稳定性评价

  • 基金项目: 国家自然科学基金面上项目“菲律宾海盆底层水体性质对中更新世气候转型的响应机制”(41976192);中国地质调查局项目(DD20191010)
详细信息
    作者简介: 刘娅楠(1997—),女,硕士研究生,主要从事海洋地质研究工作,E-mail:yanan_liu@mail.sdu.edu.cn
    通讯作者: 刘森(1989—),男,博士,助理研究员,主要从事海洋地质环境等研究工作,E-mail:sen_liu@sdu.edu.cn
  • 中图分类号: P737.22

Submarine stability evaluation of the Philippine Sea of the Western Pacific based on microgeomorphologic features

More Information
  • 随着海洋战略地位的逐步提高,深远海海底资源开发和海洋工程建设将面临巨大挑战,主要是受限于技术手段,高精度调查资料难以获取,无法全面准确地进行海底稳定性评价。针对这一问题,本文提出了基于微地貌特征的深远海海底稳定性评价方法。基于已有的研究工作,本文选取西太平洋菲律宾海中南部某区域为研究区,利用ArcGIS平台建立研究区DEM(Digital Elevation Model),提取宏、微观地貌因子,结合全球地震数据、研究区底质类型和潜在地质灾害分布特征,运用模糊数学方法评价研究区海底稳定性,并绘制海底稳定性区划图。结果显示,对区域3220个评价单元进行稳定性分析,可将研究区海底稳定性划分为5个等级,包括基本稳定、较稳定、中等稳定、较不稳定和不稳定。其中,稳定区主要集中在较为平坦的中北部,不稳定区多发育在九州-帕劳海岭、海山、山间盆地等大规模地貌单元发育区,分析揭示,研究区海底稳定性与微地貌特征密切相关。因此,本文提出的基于微地貌特征的海底稳定性评价方法,能够很好地服务于深远海海底稳定性评价。

  • 加载中
  • 图 1  菲律宾海板块海底地形地貌与研究区位置图[22]

    Figure 1. 

    图 2  评价方法的技术路线

    Figure 2. 

    图 3  海底稳定性区划图

    Figure 3. 

    表 1  典型地貌因子概念及算法[25-26]

    Table 1.  Concept and algorithm of typical geomorphic factor [25-26]

    地形因子概念公式
    坡度描述地表单元陡缓程度,表示地面在某点的倾斜度tanα=△h/△dα—坡度,△h—高程差(m),△d—水平距离(m)
    地形起伏度区域最高点与最低点海拔高度的差值,反映地形起伏特征[25]RAi=ZimaxZiminRAi—地形起伏度(m),Zimax—区域内最大高程值(m),Zimin—区域内最小高程值(m)
    下载: 导出CSV

    表 2  海底稳定性评价指标体系

    Table 2.  Evaluation index system for seabed stability

    指标体系地震区划灾害地质微观地貌因子(坡度)宏观地貌因子(地形起伏度)底质类型
    1级地震动峰加速度值=0.05 g,相当于5级地震区海底火山0°~3°0~19 m基岩
    2级地震动峰加速度值=0.1 g,相当于6级地震区裂谷3°~7°19~45 m铁锰结壳
    3级地震动峰加速度值=0.15 g,相当于7级地震区海底滑坡7°~15°45~77 m含铁锰结核的远洋黏土
    4级地震动峰加速度值=0.2 g,相当于8级地震区陡坎15°~25°77~120 m远洋黏土
    5级地震动峰加速度值≥0.3 g,相当于9级地震区崩塌>25°>120 m硅藻软泥
    下载: 导出CSV

    表 3  海底稳定性评价指标隶属度值

    Table 3.  Membership value of evaluation index of seabed stability

    稳定性
    等级
    评价指标
    地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    基本稳定1级1级1级1级1级
    v10.150.150.150.150.15
    较稳定2级2级2级2级2级
    v20.300.300.300.300.30
    中等稳定3级3级3级3级3级
    v30.550.550.550.550.55
    较不稳定4级4级4级4级4级
    v40.800.800.800.800.80
    不稳定5级5级5级5级5级
    v50.850.850.850.850.85
    下载: 导出CSV

    表 4  评价指标权重值

    Table 4.  The weight value of the evaluation index

    评价指标地震区划灾害地质微观地貌因子宏观地貌因子底质类型
    权重值0.08820.44120.22060.14710.1029
    下载: 导出CSV
  • [1]

    陈连增, 雷波. 中国海洋科学技术发展70年[J]. 海洋学报, 2019, 41(10):3-22

    CHEN Lianzeng, LEI Bo. Marine science and technology development over the past 70 years in China [J]. Acta Oceanologica Sinica, 2019, 41(10): 3-22.

    [2]

    夏真. 海洋地质学的军事战略意义[J]. 南海地质研究, 2010:83-90

    XIA Zhen. The significance of marine geology in military strategy [J]. Gresearch of Eological South China Sea, 2010: 83-90.

    [3]

    汪品先. 大洋钻探与中国的海洋地质[J]. 海洋地质与第四纪地质, 2019, 39(1):7-14

    WANG Pinxian. Ocean drilling and marine geology in China [J]. Marine Geology & Quaternary Geology, 2019, 39(1): 7-14.

    [4]

    杜军, 李培英, 李萍, 等. 基于海洋灾害地质评价基础上的我国近海海底稳定性区划[J]. 海洋学报, 2014, 36(5):124-129

    DU Jun, LI Peiying, LI Ping, et al. The seabed stability zonation based on the marine geohazards evaluation in China [J]. Acta Oceanologica Sinica, 2014, 36(5): 124-129.

    [5]

    马秀冬, 李萍, 徐元芹, 等. 冲绳海槽中段海底灾害地质类型及海底稳定性评价[J]. 海洋科学进展, 2018, 36(1):79-87 doi: 10.3969/j.issn.1671-6647.2018.01.007

    MA Xiudong, LI Ping, XU Yuanqin, et al. Submarine geohazards types and seabed stability evaluation of the middle part of the Okinawa Trough [J]. Advances in Marine Science, 2018, 36(1): 79-87. doi: 10.3969/j.issn.1671-6647.2018.01.007

    [6]

    MacKillop K, Fenton G, Mosher D, et al. Assessing submarine slope stability through deterministic and probabilistic approaches: a case study on the west-central scotia slope [J]. Geosciences, 2019, 9(1): 18.

    [7]

    Bellwald B, Urlaub M, Hjelstuen B O, et al. NE Atlantic continental slope stability from a numerical modeling perspective [J]. Quaternary Science Reviews, 2019, 203: 248-265. doi: 10.1016/j.quascirev.2018.11.019

    [8]

    Ionov V Y, Kalinin E V, Fomenko I K, et al. Regional slope stability assessment along the Caucasian shelf of the Black Sea[M]//Krastel S, Behrmann J H, Völker D, et al. Submarine Mass Movements and Their Consequences: 6th International Symposium. Cham: Springer, 2014, 37: 201-212.

    [9]

    Dimakis P, Elverhøi A, Høeg K, et al. Submarine slope stability on high-latitude glaciated Svalbard–Barents Sea margin [J]. Marine Geology, 2000, 162(2-4): 303-316. doi: 10.1016/S0025-3227(99)00076-6

    [10]

    Ten Brink U S, Andrews B D, Miller N C. Seismicity and sedimentation rate effects on submarine slope stability [J]. Geology, 2018, 44(7): 563-566.

    [11]

    Lehner F K, Schöepfer M P J. Slope stability and exact solutions for cohesive critical Coulomb wedges from Mohr diagrams [J]. Journal of Structural Geology, 2018, 116: 234-240. doi: 10.1016/j.jsg.2018.04.021

    [12]

    胡光海, 刘振夏, 房俊伟. 国内外海底斜坡稳定性研究概况[J]. 海洋科学进展, 2006, 24(1):130-136 doi: 10.3969/j.issn.1671-6647.2006.01.017

    HU Guanghai, LIU Zhenxia, FANG Junwei. A review of submarine slope stability studies at home and abroad [J]. Advances in Marine Science, 2006, 24(1): 130-136. doi: 10.3969/j.issn.1671-6647.2006.01.017

    [13]

    Guo X S, Zheng D F, Nian T K, et al. Large-scale seafloor stability evaluation of the northern continental slope of South China Sea [J]. Marine Georesources & Geotechnology, 2020, 38(7): 804-817.

    [14]

    徐元芹, 李萍, 刘乐军, 等. 河北南堡-曹妃甸海域工程地质条件及海底稳定性评价[J]. 海洋学报, 2017, 39(5):103-114

    XU Yuanqin, LI Ping, LIU Lejun, et al. Engineering geological conditions and seabed stability assessment of Nanpu-Caofeidian, Hebei Province [J]. Acta Oceanologica Sinica, 2017, 39(5): 103-114.

    [15]

    宋晓帅, 于开宁, 吴振, 等. 莱州湾海岸带工程地质环境质量分区[J]. 海洋地质与第四纪地质, 2019, 39(2):79-89

    SONG Xiaoshuai, YU Kaining, WU Zhen, et al. Engineering geological environment quality division of Laizhou Bay coastal zone [J]. Marine Geology & Quaternary Geology, 2019, 39(2): 79-89.

    [16]

    李常珍, 李乃胜, 林美华. 菲律宾海的地势特征[J]. 海洋科学, 2000, 24(6):47 doi: 10.3969/j.issn.1000-3096.2000.06.014

    LI Changzhen, LI Naisheng, LIN Meihua. Terrain features of the Philippine Sea [J]. Marine Sciences, 2000, 24(6): 47. doi: 10.3969/j.issn.1000-3096.2000.06.014

    [17]

    Macpherson C G, Hall R. Tectonic setting of Eocene boninite magmatism in the Izu–Bonin–Mariana forearc [J]. Earth and Planetary Science Letters, 2001, 186(2): 215-230. doi: 10.1016/S0012-821X(01)00248-5

    [18]

    Takahashi N, Suyehiro K, Shinohara M. Implications from the seismic crustal structure of the northern Izu-Bonin arc [J]. The Island Arc, 1998, 7(3): 383-394. doi: 10.1111/j.1440-1738.1998.00197.x

    [19]

    Ark J O, Hori T, Kaneda Y. Seismotectonic implications of the Kyushu-Palau Ridge subducting beneath the westernmost Nankai Forearc [J]. Earth, Planets and Space, 2009, 61(8): 1013-1018. doi: 10.1186/BF03352951

    [20]

    Nishizawa A, Kaneda K, Katagiri Y, et al. Variation in crustal structure along the Kyushu-Palau Ridge at 15-21 N on the Philippine Sea plate based on seismic refraction profiles [J]. Earth, Planets and Space, 2007, 59(6): e17-e20. doi: 10.1186/BF03352711

    [21]

    Yamashita M, Tsuru T, Takahashi N, et al. Fault configuration produced by initial arc rifting in the Parece Vela Basin as deduced from seismic reflection data [J]. Island Arc, 2007, 16(3): 338-347. doi: 10.1111/j.1440-1738.2007.00594.x

    [22]

    张斌, 李广雪, 黄继峰. 菲律宾海构造地貌特征[J]. 海洋地质与第四纪地质, 2014, 34(2):79-88

    ZHANG Bin, LI Guangxue, HUANG Jifeng. The tectonic geomorphology of the Philippine sea [J]. Marine Geology & Quaternary Geology, 2014, 34(2): 79-88.

    [23]

    闫满存, 王光谦, 李保生, 等. 基于模糊数学的广东沿海陆地地质环境区划[J]. 地理学与国土研究, 2000, 16(4):41-48

    YAN Mancun, WANG Guangqian, LI Baosheng, et al. Land Geoenvironmental Regionalization of Guangdong Coast by Fuzzy [J]. Geography and Territorial Research, 2000, 16(4): 41-48.

    [24]

    郭芳芳, 杨农, 孟晖, 等. 地形起伏度和坡度分析在区域滑坡灾害评价中的应用[J]. 中国地质, 2008, 35(1):131-143 doi: 10.3969/j.issn.1000-3657.2008.01.014

    GUO Fangfang, YANG Nong, MENG Hui, et al. Application of the relief amplitude and slope analysis to regional landslide hazard assessments [J]. Geology in China, 2008, 35(1): 131-143. doi: 10.3969/j.issn.1000-3657.2008.01.014

    [25]

    兰燕, 王明华, 刘珊红, 等. 逐点内插法建立DEM的研究[J]. 测绘科学, 2009, 34(1):214-216 doi: 10.3771/j.issn.1009-2307.2009.01.077

    LAN Yan, WANG Minghua, LIU Shanhong, et al. Study on building DEM based on point-by-point interpolation algorithm [J]. Science of Surveying and Mapping, 2009, 34(1): 214-216. doi: 10.3771/j.issn.1009-2307.2009.01.077

    [26]

    涂汉明, 刘振东. 中国地势起伏度最佳统计单元的求证[J]. 湖北大学学报:自然科学版, 1990, 12(3):266-271

    XU Hanming, LIU Zhendong. Demonstrating on optimum statistic unit of relief amplitude in China [J]. Journal of Hubei University (Natural Science), 1990, 12(3): 266-271.

    [27]

    陈曦, 曾亚武, 刘伟, 等. 岩体基本质量分级模糊综合评价法研究[J]. 武汉大学学报: 工学版, 2019, 52(6):511-522

    CHEN Xi, ZENG Yawu, LIU Wei, et al. Research on classification of rock mass basic quality based on fuzzy comprehensive evaluation method [J]. Engineering Journal of Wuhan University, 2019, 52(6): 511-522.

    [28]

    马林伟, 吴时国. 海底滑坡过程的分段模拟研究[C]//国家安全地球物理丛书(十五)——丝路环境与地球物理. 西安: 西安地图出版社, 2019: 65-69.

    MA Linwei, WU Shiguo. Subsection simulation of submarine landslide process[C]//National Security Geophysics Series (xv) - Silk Road Environment and Geophysics. Xi'an: Xi'an Map Publishing House, 2019: 65-69.

    [29]

    Whelan N T, Cohmen J M, Suhayda J N, et al. Acoustical penetration and shear strength in gas-charged sediment [J]. Marine Geotechnology, 1977, 2: 147-159. doi: 10.1080/10641197709379776

    [30]

    马云, 李三忠, 夏真, 等. 南海北部神狐陆坡区灾害地质因素特征[J]. 地球科学—中国地质大学学报, 2014, 39(9):1364-1372

    MA Yun, LI Sanzhong, XIA Zhen, et al. Characteristics of hazardous geological factors on Shenhu continental slope in the Northern South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2014, 39(9): 1364-1372.

    [31]

    Sultan N, Voisset M, Marsset B, et al. Potential role of compressional structures in generating submarine slope failures in the Niger Delta [J]. Marine Geology, 2006, 237(3-4): 169-190.

    [32]

    许文锋, 车爱兰, 王治, 等. 地震荷载作用下海底滑坡特征及其机理[J]. 上海交通大学学报, 2011, 45(5):782-786

    XU Wenfeng, CHE Ailan, WANG Zhi, et al. Destruction characteristic of seabed landslide during earthquake motion and its mechanism [J]. Journal of Shanghai Jiaotong University, 2011, 45(5): 782-786.

    [33]

    Imbo Y, De Batist M, Canals M, et al. The Gebra Slide: a submarine slide on the trinity peninsula margin, Antarctica [J]. Marine Geology, 2003, 193(3-4): 235-252. doi: 10.1016/S0025-3227(02)00664-3

    [34]

    朱友生. 南海北部陆架边缘区域地质灾害类型特征及分布规律[J]. 中国海上油气, 2017, 29(3):107-115

    ZHU Yousheng. Features and distribution pattern of the geological hazards in the northern continental shelf margins of South China Sea [J]. China Offshore Oil and Gas, 2017, 29(3): 107-115.

    [35]

    谢先得, 朱照宇, 覃慕陶, 等. 广东沿海地质环境与地质灾害[M]. 广州: 广东科技出版社, 2003.

    XIE Xiande, ZHU Zhaoyu, QIN Mutao, et al. Geological Environment and Geological Hazards Along the Coast of Guangdong Province[M]. Guangzhou: Guangdong Science and Technology Press, 2003.

    [36]

    杜军, 李培英, 魏巍, 等. 中国海岸带灾害地质稳定性区划[J]. 自然灾害学报, 2008, 17(4):1-6 doi: 10.3969/j.issn.1004-4574.2008.04.001

    DU Jun, LI Peiying, WEI Wei, et al. Stability zoning of hazard geology in coastal zone of China [J]. Journal of Natural Disasters, 2008, 17(4): 1-6. doi: 10.3969/j.issn.1004-4574.2008.04.001

    [37]

    蔡鹤生, 周爱国, 唐朝晖. 地质环境质量评价中的专家-层次分析定权法[J]. 地球科学—中国地质大学学报, 1998, 23(3):299-302

    CAI Hesheng, ZHOU Aiguo, TANG Zhaohui. Expert-analytic hierarchy weighting process in geological environmental quality assessment [J]. Earth Science—Journal of China University of Geosciences, 1998, 23(3): 299-302.

  • 加载中

(3)

(4)

计量
  • 文章访问数:  3345
  • PDF下载数:  45
  • 施引文献:  0
出版历程
收稿日期:  2020-12-18
修回日期:  2021-02-02
刊出日期:  2022-02-28

目录