Provenance evolution since Middle Holocene of the sediments on the East Siberian shelf: Evidence from elemental geochemistry
-
摘要:
北极地区对全球气候变化非常敏感,是研究古环境和古气候变化的关键区域。东西伯利亚海作为北极重要的边缘海之一,对东西伯利亚陆架和陆坡沉积物来源的研究将有助于加深对北极沉积环境和气候变化的认识。本文通过对东西伯利亚海西部LV77-36岩心沉积物中碎屑组分的主微量、稀土元素进行分析,阐述了各指标随年代的变化特征,并探讨了中全新世以来东西伯利亚海西部碎屑沉积来源的变化及其对古环境演变的响应。结果表明中全新世以来LV77-36岩心沉积物主要来源于勒拿河、因迪吉尔卡河、亚纳河和马更些河的河流输入,以及西伯利亚地台和新西伯利亚群岛的海岸侵蚀物质。与其他古气候参数对比发现,海冰和洋流的变化对源区物质在东西伯利亚陆架的分散和沉积有着重要的影响。全新世晚期由于楚科奇海海冰的增加、西伯利亚沿岸流的减弱和波弗特环流的增强,导致北美端元的物质贡献相较全新世中期有小幅度增加。
Abstract:The Arctic region is very sensitive to global climate change. It is a key area in the world to the study of paleoenvironmental and paleoclimatic changes. The East Siberian Sea (ESS) is one of the important marginal seas in the Arctic region. Study of the sediment provenance of the ESS shelf is essential to the overall understanding of the Arctic environmental and climatic changes. Based on the analyzing results of the major, trace and rare earth elements from the core of LV77-36, this paper described the change patterns of concerned indices with time, discussed the variation of detrital components in the ESS sediments since Middle Holocene, and finally, revealed the response of provenance evolution to paleoenvironment changes. The results show that since Middle Holocene, the sediments of the core LV77-36 are mainly coming from the suspended materials carried by the Lena, Indigirka, Yana and Mackenzie rivers, in addition to the coastal erosive materials from the Siberian platform and New Siberian Islands. According to the Comparison with other paleoclimatic parameters, it is found that the changes of sea ice and ocean currents have important effects on the dispersion and deposition of sediments on the East Siberia shelf. In Late Holocene, due to the increase in sea ice in the Chukchi Sea, the weakening of the Siberian coastal current and the strengthening of the Beaufort circulation, the material contributed by the North American end member increased slightly compared to the Middle Holocene sediments.
-
表 1 LV77-36岩心沉积物碎屑组分主量元素含量
Table 1. Major element contents of detrital components in core LV77-36
Al2O3 Fe2O3 CaO MgO K2O Na2O MnO P2O5 TiO2 最小值 14.94 4.59 0.38 1.38 2.93 2.14 0.03 0.05 0.79 最大值 16.73 5.67 0.51 1.63 3.18 2.50 0.03 0.08 0.90 平均值 15.75 5.07 0.46 1.50 3.03 2.34 0.03 0.06 0.83 标准差 0.39 0.28 0.03 0.06 0.07 0.08 0.00 0.01 0.03 注:主量元素含量单位为%。 表 2 LV77-36岩心沉积物碎屑组分微量元素含量
Table 2. Trace element contents of detrital components in core LV77-36
Sc Cr Co Ni Sr Ba Hf Pb Th Zr 最小值 11.54 73.35 8.04 23.64 128.82 617.16 5.55 7.18 9.42 181.90 最大值 15.48 90.35 10.24 32.15 148.91 680.29 6.49 8.15 12.43 229.60 平均值 13.73 80.61 9.17 26.88 139.93 640.42 5.87 7.64 10.80 200.43 标准差 0.82 3.77 0.60 2.11 5.39 13.21 0.21 0.25 0.77 10.22 注:微量元素含量单位为μg/g。 表 3 LV77-36岩心碎屑组分稀土元素含量及主要参数
Table 3. Contents and parameters of rare earth elements from detrital components of core LV77-36
最小值 最大值 平均值 标准差 La 31.25 34.17 32.38 0.74 Ce 58.53 65.01 61.47 1.63 Pr 6.99 7.63 7.23 0.17 Nd 25.00 27.19 25.77 0.60 Sm 4.20 4.55 4.35 0.09 Eu 0.90 0.99 0.94 0.02 Gd 3.59 3.99 3.75 0.09 Tb 0.57 0.64 0.60 0.02 Dy 3.63 4.08 3.82 0.12 Ho 0.72 0.82 0.77 0.02 Er 2.22 2.52 2.37 0.08 Tm 0.36 0.42 0.39 0.01 Yb 2.33 2.74 2.55 0.10 Lu 0.36 0.44 0.39 0.02 ΣREE 141.56 154.43 146.77 3.23 ΣLREE 127.28 139.43 132.13 3.06 ΣHREE 13.86 15.56 14.64 0.43 LREE/HREE 8.38 9.57 9.03 0.28 (La/Sm) NASC 1.29 1.38 1.33 0.02 (La/Yb) NASC 1.10 1.35 1.23 0.05 δCe 0.86 0.90 0.87 0.01 δEu 0.99 1.05 1.02 0.01 注:稀土元素含量单位为μg/g;
δCe,δEu;
其中NASC为北美页岩标准化的结果。表 4 LV77-36岩心沉积物主微量元素因子载荷矩阵
Table 4. Factor loading matrix of major and trace elements in core LV77-36
变量 因子1 因子2 因子3 因子4 方差 33.15 20.90 15.48 14.66 MgO 0.942 0.024 0.049 0.282 Fe2O3 0.883 −0.219 0.214 0.105 Rb 0.884 −0.102 0.237 0.278 Co 0.842 −0.254 0.287 0.196 V 0.803 −0.333 0.415 −0.172 Al2O3 0.776 0.508 −0.075 −0.120 Th 0.654 0.090 0.499 −0.249 Sr 0.036 0.077 −0.043 0.942 CaO 0.025 −0.393 0.491 0.711 Y −0.171 0.764 0.136 -0.102 REE 0.182 0.749 0.218 0.425 Ta −0.237 0.787 −0.248 −0.209 TiO2 −0.304 0.690 −0.480 −0.337 Ba 0.395 0.645 −0.477 −0.073 Hf 0.388 0.101 0.801 0.000 Zr 0.438 −0.190 0.738 0.367 黏土 −0.303 0.434 −0.054 −0.547 注:方差单位为%;元素粒度数据引自Astakhov[23]。 表 5 东西伯利亚海潜在源区及其元素平均含量
Table 5. Potential source areas of the ESS and their mean element contents
元素 鄂霍茨克-楚科奇火山带① 维尔霍杨斯克褶皱带① 西伯利亚克拉通① 西西伯利亚地台① 拉普捷夫海[22]
(SS)东西伯利亚海[23]
(SS)楚科奇海[23]
(SS)哈坦加河[48]
(SPM)勒拿河[48]
(SPM)亚纳河[48]
(SPM)马更些河[49-50]
(SPM)西部 东部 Rb 176.34 16.33 98.81 39.90 − 120.61 107.45 86.27 − − − − Zr 214.17 142.21 335.27 224.90 − 119.92 87.66 67.30 − − − − Th 21.99 2.03 10.57 3.32 − 10.63 8.77 7.29 − − − − La 52.03 17.68 35.65 36.00 45.50 36.40 27.00 21.85 22.00 43.20 31.00 31.40 Ce 108.99 39.93 75.27 83.80 90.10 74.33 61.00 50.28 48.00 94.80 68.00 61.20 Pr 12.25 5.40 8.47 11.00 9.95 8.04 6.69 5.44 5.60 10.08 7.80 7.53 Nd 43.77 23.2 32.54 50.50 36.60 29.67 24.80 20.28 22.00 36.90 29.00 28.00 Sm 8.34 5.34 6.92 11.30 6.29 5.88 5.06 4.10 4.50 6.58 5.80 5.30 Eu 1.15 1.50 1.63 3.34 1.42 1.18 1.07 0.89 1.30 1.49 2.10 1.12 Gd 7.56 6.37 7.32 10.60 5.64 4.89 4.50 9.83 4.70 6.21 5.90 4.86 Tb 1.17 0.98 1.23 1.59 0.83 0.75 0.65 0.54 0.74 0.81 0.80 0.72 Dy 6.43 6.01 7.91 8.80 4.39 4.02 3.45 2.93 4.30 4.50 4.40 4.45 Ho 1.28 1.20 1.71 1.65 0.83 0.78 0.66 0.56 0.86 0.85 0.87 0.94 Er 3.53 3.30 5.07 4.20 2.48 2.27 1.92 1.62 2.40 2.54 2.50 2.65 Tm 0.53 0.47 0.76 0.57 0.34 0.32 0.27 0.23 0.35 0.32 0.36 0.38 Yb 3.53 2.91 4.91 3.42 2.35 2.19 1.79 1.51 2.20 2.47 2.40 2.46 Lu 0.51 0.39 0.74 0.51 0.34 0.32 0.26 0.21 0.37 0.32 0.42 0.39 注:稀土元素含量单位为μg/g;SS为表层沉积物;SPM为悬浮颗粒物;−为无数据。 -
[1] 柯长青, 金鑫, 沈校熠, 等. 南北极海冰变化及其影响因素的对比分析[J]. 极地研究, 2020, 32(1):1-12
KE Changqing, JIN Xin, SHEN Xiaoyi, et al. Comparison of antarctic and arctic seaice variations and their impact factors [J]. Chinese Journal of Polar Research, 2020, 32(1): 1-12.
[2] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis [J]. Global and Planetary Change, 2011, 77(1-2): 85-96. doi: 10.1016/j.gloplacha.2011.03.004
[3] Chapman W L, Walsh J E. Recent variations of sea ice and air temperature in high latitudes [J]. Bulletin of the American Meteorological Society, 1993, 74(1): 33-48. doi: 10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2
[4] Stein R, Fahl K, Schade I, et al. Holocene variability in sea ice cover, primary production, and Pacific-Water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean) [J]. Journal of Quaternary Science, 2017, 32(3): 362-379. doi: 10.1002/jqs.2929
[5] Frey K E, Moore G W K, Cooper L W, et al. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region [J]. Progress in Oceanography, 2015, 136: 32-49. doi: 10.1016/j.pocean.2015.05.009
[6] Shakhova N, Semiletov I, Sergienko V, et al. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 373(2052): 20140451. doi: 10.1098/rsta.2014.0451
[7] Vonk J E, Sánchez-García L, Van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia [J]. Nature, 2012, 489(7414): 137-140. doi: 10.1038/nature11392
[8] Bröder L, Andersson A, Tesi T, et al. Quantifying Degradative loss of terrigenous organic carbon in surface sediments across the Laptev and east Siberian sea [J]. Global Biogeochemical Cycles, 2019, 33(1): 85-99. doi: 10.1029/2018GB005967
[9] Nikolaeva N A, Derkachev A N, Dudarev O V. Mineral composition of sediments from the Eastern Laptev Sea shelf and East Siberian Sea [J]. Oceanology, 2013, 53(4): 472-480. doi: 10.1134/S0001437013040073
[10] Chen M L, Kim J H, Lee Y K, et al. Subsea permafrost as a potential major source of dissolved organic matter to the East Siberian Arctic Shelf [J]. Science of the Total Environment, 2021, 777: 146100. doi: 10.1016/j.scitotenv.2021.146100
[11] Guo L D, Semiletov I, Gustafsson Ö, et al. Characterization of Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export [J]. Global Biogeochemical Cycles, 2004, 18(1): GB1036.
[12] Keskitalo K, Tesi T, Bröder L, et al. Sources and characteristics of terrestrial carbon in Holocene-scale sediments of the East Siberian Sea [J]. Climate of the Past, 2017, 13(9): 1213-1226. doi: 10.5194/cp-13-1213-2017
[13] Tesi T, Geibel M C, Pearce C, et al. Carbon geochemistry of plankton-dominated samples in the Laptev and East Siberian shelves: contrasts in suspended particle composition [J]. Ocean Science, 2017, 13(5): 735-748. doi: 10.5194/os-13-735-2017
[14] Bauch H A, Kassens H. Arctic Siberian shelf environments—an introduction [J]. Global and Planetary Change, 2005, 48(1-3): 1-8. doi: 10.1016/j.gloplacha.2004.12.003
[15] Cronin T M, O'Regan M, Pearce C, et al. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins [J]. Climate of the Past, 2017, 13(9): 1097-1110. doi: 10.5194/cp-13-1097-2017
[16] Dudarev O V, Semiletov I P, Charkin A N, et al. Deposition settings on the continental shelf of the East Siberian Sea [J]. Doklady Earth Sciences, 2006, 409(6): 1000-1005.
[17] Joe Y J, Polyak L, Schreck M, et al. Late Quaternary depositional and glacial history of the Arliss Plateau off the East Siberian margin in the western Arctic Ocean [J]. Quaternary Science Reviews, 2020, 228: 106099. doi: 10.1016/j.quascirev.2019.106099
[18] Niessen F, Hong J K, Hegewald A, et al. Repeated Pleistocene glaciation of the East Siberian continental margin [J]. Nature Geoscience, 2013, 6(10): 842-846. doi: 10.1038/ngeo1904
[19] Wegner C, Bennett K E, De Vernal A, et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene [J]. Polar Research, 2015, 34(1): 24964. doi: 10.3402/polar.v34.24964
[20] Maccali J, Hillaire-Marcel C, Not C. Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions [J]. Polar Research, 2018, 37(1): 1442982. doi: 10.1080/17518369.2018.1442982
[21] Rachold V, Grigoriev M N, Are F E, et al. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas [J]. International Journal of Earth Sciences, 2000, 89(3): 450-460. doi: 10.1007/s005310000113
[22] Astakhov A S, Semiletov I P, Sattarova V V, et al. Rare earth elements in the bottom sediments of the east arctic seas of Russia as indicators of Terrigenous input [J]. Doklady Earth Sciences, 2018, 482(2): 1324-1327. doi: 10.1134/S1028334X18100021
[23] Astakhov A S, Sattarova V V, Shi X F, et al. Distribution and sources of rare earth elements in sediments of the Chukchi and East Siberian Seas [J]. Polar Science, 2019, 20: 148-159. doi: 10.1016/j.polar.2019.05.005
[24] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010
YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Acta Electronica Sinica, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010
[25] Dou Y G, Yang S Y, Liu Z X, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions [J]. Marine Geology, 2010, 275(1-4): 212-220. doi: 10.1016/j.margeo.2010.06.002
[26] Gordeev V V, Martin J M, Sidorov I S, et al. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean [J]. American Journal of Science, 1996, 296(6): 664-691. doi: 10.2475/ajs.296.6.664
[27] Gordeev V V. Fluvial sediment flux to the Arctic Ocean [J]. Geomorphology, 2006, 80(1-2): 94-104. doi: 10.1016/j.geomorph.2005.09.008
[28] HOlmes R M, McClelland J M, Peterson B J, et al. A circumpolar perspective on fluvial sediment flux to the Arctic ocean [J]. Global Biogeochemical Cycles, 2002, 16(4): 45-1-45-14.
[29] Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans [J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.
[30] Sharma M, Basu A R, Nesterenko G V. Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics [J]. Earth and Planetary Science Letters, 1992, 113(3): 365-381. doi: 10.1016/0012-821X(92)90139-M
[31] Huh Y, Panteleyev G, Babich D, et al. The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges [J]. Geochimica et Cosmochimica Acta, 1998, 62(12): 2053-2075. doi: 10.1016/S0016-7037(98)00127-6
[32] Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting [J]. Continental Shelf Research, 2003, 23(11-13): 1175-1200. doi: 10.1016/S0278-4343(03)00091-8
[33] Fagel N, Not C, Gueibe J, et al. Late Quaternary evolution of sediment provenances in the Central Arctic Ocean: mineral assemblage, trace element composition and Nd and Pb isotope fingerprints of detrital fraction from the Northern Mendeleev Ridge [J]. Quaternary Science Reviews, 2014, 92: 140-154. doi: 10.1016/j.quascirev.2013.12.011
[34] Fujita K, Stone D B, Layer P W, et al. Cooperative program helps decipher tectonics of northeastern Russia [J]. Eos, Transactions American Geophysical Union, 1997, 78(24): 245-253.
[35] Harbert W, Frei L, Jarrard R, et al. Palaeomagnetic and plate-tectonic constrains on the evolution of the Alaskan–eastern Siberian Arctic[M]//Grantz A, Johnson G L, Sweeney J F. The Arctic Ocean Region. The Geology of North America, L. Colorado: Geological Society of America, 1990: 567-592.
[36] Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice [J]. Geophysical Research Letters, 2007, 34(19): L19504. doi: 10.1029/2007GL031138
[37] Johannessen O M, Bengtsson L, Miles M W, et al. Arctic climate change: observed and modelled temperature and sea-ice variability [J]. Tellus A: Dynamic Meteorology and Oceanography, 2004, 56(4): 328-341. doi: 10.3402/tellusa.v56i4.14418
[38] Kolatschek J, Eicken H, Alexandrov V Y, et al. The sea-ice cover of the Arctic Ocean and the Eurasian marginal seas: A brief overview of present day patterns and variability[C]//Berichte zur Polarforschung 212, Alfred-Wegener Institut für Polar und Meeresforschung. Bremerhaven, Germany: A-W-I, Columbusstrasse, 1996: 1-324.
[39] Razumov S O. Permafrost as a factor of the dynamics of the coastal zone of the Russian East Arctic Seas [J]. Oceanology, 2010, 50(2): 262-267. doi: 10.1134/S0001437010020116
[40] Spielhagen R F, Bonani G, Eisenhauer A, et al. Arctic Ocean evidence for late Quaternary initiation of northern Eurasian ice sheets [J]. Geology, 1997, 25(9): 783-786. doi: 10.1130/0091-7613(1997)025<0783:AOEFLQ>2.3.CO;2
[41] Jones E P, Anderson L G, Swift J H. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: implications for circulation [J]. Geophysical Research Letters, 1998, 25(6): 765-768. doi: 10.1029/98GL00464
[42] Darby D A, Bischof J F. A Holocene record of changing arctic ocean ice drift analogous to the effects of the arctic oscillation [J]. Paleoceanography, 2004, 19(1): 1-9.
[43] Darby D A, Ortiz J D, Grosch C E, et al. 1, 500-year cycle in the Arctic Oscillation identified in Holocene Arctic sea-ice drift [J]. Nature Geoscience, 2012, 5(12): 897-900. doi: 10.1038/ngeo1629
[44] Romanovskii N N, Hubberten H W, Gavrilov A V, et al. Permafrost of the east Siberian Arctic shelf and coastal lowlands [J]. Quaternary Science Reviews, 2004, 23(11-13): 1359-1369. doi: 10.1016/j.quascirev.2003.12.014
[45] Bayon G, German C R, Boella R M, et al. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis [J]. Chemical Geology, 2002, 187(3-4): 179-199. doi: 10.1016/S0009-2541(01)00416-8
[46] Gutjahr M, Frank M, Stirling C H, et al. Reliable extraction of a deepwater trace metal isotope signal from Fe-Mn oxyhydroxide coatings of marine sediments [J]. Chemical Geology, 2007, 242(3-4): 351-370. doi: 10.1016/j.chemgeo.2007.03.021
[47] Byrne R H, Sholkovitz E R. Marine chemistry and geochemistry of the lanthanides [J]. Handbook on the Physics and Chemistry of Rare Earths, 1996, 23: 497-593.
[48] Kassens H, Bauch H A, Dmitrenko I A, et al. Land-Ocean Systems in the Siberian Arctic: Dynamics and History[M]. Berlin Heidelberg: Springer, 1999: 199-222.
[49] Gaillardet J, Dupré B, Allègre C J. Geochemistry of large river suspended sediments: Silicate weathering or recycling tracer? [J]. Geochimica et Cosmochimica Acta, 1999, 63(23-24): 4037-4051. doi: 10.1016/S0016-7037(99)00307-5
[50] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited [J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38. doi: 10.1016/j.gca.2015.08.001
[51] Sun X Q, Liu S F, Li J R, et al. Major and trace element compositions of surface sediments from the lower Bengal Fan: Implications for provenance discrimination and sedimentary environment [J]. Journal of Asian Earth Sciences, 2019, 184: 104000. doi: 10.1016/j.jseaes.2019.104000
[52] Taylor S R, McLennan S M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.
[53] 霍文冕, 曾宪章, 田伟之, 等. 北极楚科奇海近代沉积物稀土元素地球化学特征初探[J]. 极地研究, 2003, 15(1):21-27
HUO Wenmian, ZENG Xianzhang, TIAN Weizhi, et al. The Rees geochemistry of Chukchi sea sediment core [J]. Advances in Polar Science, 2003, 15(1): 21-27.
[54] Dong L S, Polyak L, Liu Y G, et al. Isotopic fingerprints of ice‐rafted debris offer new constraints on middle to late quaternary arctic circulation and glacial history [J]. Geochemistry, Geophysics, Geosystems, 2020, 21(8): e2020GC009019.
[55] 董林森, 石学法, 刘焱光, 等. 北冰洋西部表层沉积物矿物学特征及其物质来源[J]. 极地研究, 2014, 26(1):58-70
DONG Linsen, SHI Xuefa, LIU Yanguang, et al. Minerals in surface sediments in the western arctic ocean and their sources [J]. Chinese Journal of Polar Research, 2014, 26(1): 58-70.
[56] Stein R, Macdonald R W. The organic carbon cycle in the Arctic Ocean[M]. Berlin Heidelberg: Springer, 2004: 315-322.
[57] Silverberg N. Sedimentology of the surface sediments of the east siberian and laptev seas[D]. Doctoral Dissertation of University of Washington, 1972.
[58] Kalinenko V V. Clay minerals in sediments of the arctic seas [J]. Lithology and Mineral Resources, 2001, 36(4): 362-372. doi: 10.1023/A:1010414305264
[59] 李秋玲, 乔淑卿, 石学法, 等. 北极东西伯利亚陆架沉积物源: 来自黏土矿物和化学元素的证据[J]. 海洋学报, 2021, 43(3):76-89
LI Qiuling, QIAO Shuqing, SHI Xuefa, et al. Sediment provenance of the East Siberian Arctic Shelf: evidence from clay minerals and chemical elements [J]. Acta Oceanologica Sinica, 2021, 43(3): 76-89.
[60] Macdonald R W, Kuzyk Z Z A, Johannessen S C. The vulnerability of Arctic shelf sediments to climate change [J]. Environmental Reviews, 2015, 23(4): 461-479. doi: 10.1139/er-2015-0040
[61] Pisias N G, Murray R W, Scudder R P. Multivariate statistical analysis and partitioning of sedimentary geochemical data sets: General principles and specific MATLAB scripts [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4015-4020. doi: 10.1002/ggge.20247
[62] Anderson C H, Murray R W, Dunlea A G, et al. Aeolian delivery to Ulleung basin, Korea (Japan Sea), during development of the East Asian Monsoon through the last 12 Ma [J]. Geological Magazine, 2019, 157(5): 806-817.
[63] Anderson C H, Murray R W, Dunlea A G, et al. Climatically driven changes in the supply of Terrigenous sediment to the East China Sea [J]. Geochemistry, Geophysics, Geosystems, 2018, 19(8): 2463-2477. doi: 10.1029/2017GC007339
[64] Dunlea A G, Murray R W, Ramos D P S, et al. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering [J]. Nature Communications, 2017, 8(1): 844. doi: 10.1038/s41467-017-00853-5
[65] Laskar J P, Robutel F, Joutel M, et al. A long-term numerical solution for the insolation quantities of the Earth [J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[66] Spratt R M, Lisiecki L E. A Late Pleistocene sea level stack [J]. Climate of the Past, 2016, 12(4): 1079-1092. doi: 10.5194/cp-12-1079-2016
[67] North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 2004, 431(7005): 147-151. doi: 10.1038/nature02805
[68] Rudenko О, Taldenkova Е, Ovsepyan Y, et al. A multiproxy-based reconstruction of the mid- to late Holocene paleoenvironment in the Laptev Sea off the Lena River Delta (Siberian Arctic) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 540: 109502. doi: 10.1016/j.palaeo.2019.109502
[69] Bauch H A, Mueller-Lupp T, Taldenkova E, et al. Chronology of the Holocene transgression at the North Siberian margin [J]. Global and Planetary Change, 2001, 31(1-4): 125-139. doi: 10.1016/S0921-8181(01)00116-3
[70] Klemann V, Heim B, Bauch H A, et al. Sea-level evolution of the Laptev Sea and the East Siberian Sea since the last glacial maximum [J]. Arktos, 2015, 1(1): 1. doi: 10.1007/s41063-015-0004-x
[71] Hörner T, Stein R, Fahl K, et al. Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean)-A high-resolution biomarker study [J]. Quaternary Science Reviews, 2016, 143: 133-149. doi: 10.1016/j.quascirev.2016.04.011
[72] Wagner A, Lohmann G, Prange M. Arctic river discharge trends since 7ka BP [J]. Global and Planetary Change, 2011, 79(1-2): 48-60. doi: 10.1016/j.gloplacha.2011.07.006
[73] Yamamoto M, Nam S I, Polyak L, et al. Holocene dynamics in the Bering Strait inflow to the Arctic and the Beaufort Gyre circulation based on sedimentary records from the Chukchi Sea [J]. Climate of the Past, 2017, 13(9): 1111-1127. doi: 10.5194/cp-13-1111-2017
[74] Wanner H, Beer J, Bütikofer J, et al. Mid- to Late Holocene climate change: an overview [J]. Quaternary Science Reviews, 2008, 27(19-20): 1791-1828. doi: 10.1016/j.quascirev.2008.06.013
[75] Biskaborn B K, Subetto D A, Savelieva L A, et al. Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability [J]. Quaternary Science Reviews, 2016, 147: 406-421. doi: 10.1016/j.quascirev.2015.08.014