Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities
-
摘要:
海底沉积物孔隙水地球化学特征能快速响应甲烷渗漏活动及其生物地球化学过程,从而记录甲烷渗漏活动特征。对采自南海南部北康盆地的3个重力沉积柱状沉积物孔隙水样品(BH-H75、BH-H13Y和BH-H61)进行了甲烷浓度、溶解无机碳(DIC)和碳同位素(δ13CDIC)、阴离子(SO42−、Cl−)以及主微量元素(Ca2+、Mg2+、Sr2+、Ba2+)等地球化学分析。(△DIC+△Ca2++△Mg2+)/△SO42−比率图解与δ13CDIC深度剖面特征揭示了有机质硫酸盐还原反应(OSR)和硫酸盐驱动-甲烷厌氧氧化反应(SD-AOM)在不同沉积柱中所占比例的不同,其中BH-H13Y沉积柱中OSR和SD-AOM共同存在;BH-H75沉积柱中OSR占主导;在BH-H61沉积柱中SD-AOM占主导,且其底部可能存在微生物产甲烷作用。硫酸盐浓度线性拟合关系指示BH-H13Y的硫酸盐-甲烷过渡带(SMTZ)的深度约为700 cmbsf。结合SO42−浓度、DIC浓度最大值和δ13CDIC最小值推测BH-H61的SMTZ深度约为480 cmbsf。BH-H61和BH-H13Y沉积柱中,较浅的SMTZ深度、上升的DIC浓度以及强烈负偏的δ13CDIC值指示研究区存在甲烷渗漏活动。此外,在BH-H61和BH-H13Y站位,硫酸盐浓度随深度降低的变化梯度在沉积柱下部较上部陡,指示向上迁移的甲烷通量在时间上逐渐增强。孔隙水中Ca2+、Mg2+、Sr2+浓度以及Mg/Ca、Sr/Ca比值变化特征指示研究区沉积物中可能有自生高镁方解石矿物生成;而BH-H61站位SMTZ界面以下,孔隙水中Ba2+浓度升高,指示了硫酸钡的溶解作用。
-
关键词:
- 孔隙水 /
- 硫酸盐驱动甲烷厌氧氧化(SD-AOM) /
- 硫酸盐-甲烷过渡带 (SMTZ) /
- 甲烷渗漏 /
- 北康盆地
Abstract:The geochemical characteristics of pore water in seabed sediments may quickly respond to the changes in the methane seepage and related biogeochemical processes. In this paper, methane, DIC and its carbon isotope value (δ13CDIC), anions (SO42−, Cl−), major and trace elements (Ca2+, Mg2+, Sr2+, Ba2+) are analyzed for the pore water samples (BH-H75, BH-H13Y and BH-H61) collected from the Beikang Basin in the southern SCS. The (△DIC+△Ca2++△Mg2+)/△SO42− ratios and δ13CDIC show that organoclastic sulfate reduction (OSR) and sulfate-driven anaerobic oxidation of methane (SD-AOM) vary from different columns. For the column of BH-H13Y, OSR and SD-AOM occur together. However, OSR is dominant in column BH-H75, while SD-AOM dominates the BH-H61 column. There may be microbial methanogenesis at the deeper layer in the BH-H61 column. Based on the linear fitting sulfate concentrations, the sulfate-methane transition zone (SMTZ) of BH-H13Y is estimated to be about 700 cmbsf. According to SO42− concentrations, the maximum DIC concentration and the minimum δ13CDIC value, the SMTZ depth of BH-H61 is estimated at about 480 cmbsf. Sallower SMTZ depths, increasing DIC concentrations and highly negative δ13CDIC values recorded in BH-H61 and BH-H13Y columns suggest a remarkable methane seepage in the study aera. The gradients for sulfate concentrations of lower part of BH-H61 and BH-H13Y columns are steeper than that of the upper part, indicating that the methane flux upward migration increases with time. Features of Ca2+, Mg2+ and Sr2+ concentrations and Mg/Ca and Sr/Ca ratios in pore water indicate the possibility of the formation of high-Mg calcite. Below the SMTZ interface at BH-H61 column, Ba2+ concentrations increase with depth, indicating the barium sulfate dissolution occurs.
-
图 1 南海南部南沙海域北康盆地位置图[46]
Figure 1.
表 1 南海南部北康盆地海域采集的3个沉积柱信息
Table 1. Information of three sedimentary columns collected from the Beikang Basin in the southern SCS
站位 北纬 东经 水深/m 岩心长度/cm 海底温度/℃ 校准地温梯度/(K/km) BH-H75 6.8482° 112.8052° 1 663 397 2.826 88.9 BH-H13Y 6.7107° 111.4839° 1 867 400 2.61 87.2 BH-H61 6.4809° 111.7519° 1 938 518 2.585 36.1 表 2 BH-H75、BH-H13Y和BH-H61站位沉积物孔隙水中甲烷浓度、阴离子(SO42−、Cl−)、主微量元素(Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+)、DIC和δ13CDIC、Sr/Ca与Mg/Ca比值特征
Table 2. Features of methane concentration, anions (SO42−、Cl−), major trace elements (Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+), DIC and δ13CDIC, Sr/Ca and Mg/Ca ratios of sediment pore water in BH-H75, BH-H13Y and BH-H61 sites
站位 取样深度/
cmbsfCH4/
mMSO42−/
mMCl−/
mMNa+/
mMK+/
mMMg2+/
mMCa2+/
mMSr2+/
μMBa2+/
μMDIC/
mMδ13CDIC/
‰Mg/Ca Sr/Ca BH-H75 20 0.176 26.99 540.4 443.3 12.42 48.54 9.09 110.02 0.763 2.347 −7.23 3.238 0.0265 40 0.200 26.80 531.5 442.75 12.47 48.41 9.17 112.07 0.517 2.217 −6.26 3.202 0.0267 60 0.179 25.87 529.6 444.57 12.69 48.49 9.28 107.03 0.527 2.282 −6.65 3.167 0.0252 80 0.161 25.94 534.5 444.81 12.85 48.38 9.24 109.98 0.476 2.455 −7.96 3.174 0.0260 100 0.172 26.22 541.9 445.53 12.89 48.36 8.89 108.24 0.473 2.593 −6.73 3.299 0.0266 120 0.162 25.19 536.1 442.19 11.69 48.08 9.03 140.37 0.604 3.449 −10.64 3.228 0.0340 140 0.170 24.81 532.3 443.87 12.17 48.13 9.18 111.29 0.467 3.309 −9.44 3.181 0.0265 160 0.248 24.78 541.5 444.44 12.3 48.24 9.01 107.27 0.453 3.657 −10.32 3.248 0.0260 180 0.182 25.10 554.8 441.66 12.04 47.81 9.05 105.17 0.477 3.780 −10.52 3.203 0.0254 200 0.204 24.21 541.9 446.06 12.28 48.3 9.16 107.66 0.462 4.059 −10.90 3.199 0.0257 220 0.203 23.83 543.1 442.09 12.01 47.74 8.71 105.59 0.554 4.267 −10.58 3.325 0.0265 240 0.194 23.06 533.2 443.16 12.18 47.6 9.24 104.66 0.522 4.072 −10.75 3.125 0.0248 260 0.251 22.75 536.6 443.3 12.06 47.59 8.53 105.72 0.519 4.355 −11.65 3.383 0.0271 280 0.200 22.01 531.7 436.13 12.07 46.52 8.57 102.99 0.634 4.786 −10.85 3.292 0.0263 300 0.231 21.81 539.2 441.42 12.04 46.9 8.42 105.08 0.572 5.251 −12.30 3.379 0.0273 320 0.241 21.09 541.7 437.66 11.85 46.2 7.98 102.24 0.559 5.678 −12.77 3.510 0.0280 340 0.230 20.21 539.2 446.32 12.19 46.86 8.11 102.58 0.591 5.856 −12.63 3.502 0.0276 360 0.259 19.18 537.5 443.86 12.08 46.49 9.69 102.43 0.592 6.364 −13.60 2.911 0.0231 380 0.227 18.50 540.9 448.83 12.29 46.61 7.9 101.95 0.631 7.210 −13.78 3.578 0.0282 400 0.255 17.49 535.6 444.61 12.05 45.94 7.56 98.68 0.769 7.132 −14.29 3.685 0.0285 BH-H13Y 20 0.182 27.09 543.43 457.45 12.67 49.8 9.52 110.95 0.695 2.524 −10.90 3.171 0.0255 40 0.223 26.65 541.46 457.73 12.76 49.63 9.58 114.23 0.630 2.461 −8.37 3.143 0.0261 60 0.249 26.47 550.53 454.46 12.55 49.23 9.46 109.03 0.543 2.892 −10.27 3.156 0.0252 80 0.213 25.77 544.72 447.61 12.26 48.67 9.13 108.59 0.520 1.942 −11.84 3.231 0.0260 96 0.223 25.52 544.89 456.75 12.6 49.59 9.29 108.43 0.491 3.082 −13.23 3.237 0.0255 120 0.148 25.21 547.51 455.22 12.96 49.45 9.11 108.59 0.473 2.766 −14.23 3.293 0.0261 140 0.152 24.63 543.91 451.65 12.56 48.83 8.84 106.81 0.446 3.428 −15.44 3.350 0.0264 160 0.158 24.47 547.45 451.41 12.48 48.94 9.02 106.87 0.436 3.769 −16.12 3.289 0.0259 180 0.182 24.03 545.01 457.18 12.44 49.17 8.82 108.91 0.447 3.884 −17.32 3.380 0.0270 195 0.192 24.25 556.92 452.68 12.31 48.78 8.62 107.75 0.543 3.998 −17.94 3.431 0.0273 220 0.179 22.71 543.81 452.49 12.32 48.37 8.67 104.89 0.490 4.095 −18.02 3.384 0.0265 240 0.184 22.29 540.84 451.25 12.22 48.06 8.94 104.56 0.461 4.686 −19.49 3.259 0.0256 260 0.244 21.95 546.77 448.87 12.03 47.7 8.51 103.90 0.483 4.713 −20.54 3.401 0.0267 280 0.230 21.15 543.46 449.36 12.01 47.18 8.39 103.50 0.508 4.991 −21.72 3.409 0.0270 BH-H13Y 300 0.215 20.11 537.08 447.42 12 46.51 8.32 102.63 0.539 5.861 −22.49 3.391 0.0270 320 0.212 19.46 546.95 453.52 12 47.19 8.29 103.31 0.604 5.592 −22.87 3.453 0.0272 340 0.283 18.10 541.56 449.22 11.85 46.31 8 103.42 0.645 6.344 −25.37 3.509 0.0282 360 0.235 16.78 535.98 449.7 11.8 45.87 7.99 102.00 0.693 7.263 −26.09 3.484 0.0279 380 0.276 15.59 533.93 444.82 12.66 45.19 7.55 97.01 0.754 7.374 −26.96 3.628 0.0281 400 0.267 14.82 547.52 449.07 11.56 45.21 7.92 99.01 0.813 8.463 −28.40 3.462 0.0273 BH-H61 20 0.247 25.84 538.4 454.1 13.09 49.28 8.96 104.35 0.558 2.422 −13.08 3.335 0.0255 40 0.262 25.64 551.9 451.77 13.14 48.42 10.6 101.93 0.523 2.766 −15.33 2.769 0.0210 60 0.316 24.42 542.6 453.09 13.01 48.48 8.01 106.13 0.543 3.096 −17.09 3.672 0.0290 80 0.273 23.65 542.6 451.84 12.81 48.16 8.34 105.04 0.527 3.491 −19.05 3.500 0.0275 100 0.254 23.18 541.5 450.5 12.87 47.64 7.59 102.04 0.552 3.332 −19.52 3.808 0.0294 120 0.247 22.35 536.0 450.57 12.13 48.43 7.97 102.09 0.537 4.478 −21.95 3.685 0.0280 140 0.292 21.72 536.4 453.87 12.28 48.42 8.05 103.68 0.568 5.051 −22.73 3.647 0.0282 160 0.257 21.32 540.5 454.5 12.3 48.27 7.91 106.74 0.655 4.880 −22.50 3.702 0.0295 180 0.275 20.74 539.3 456.83 12.47 48.13 7.72 102.96 0.587 5.396 −25.10 3.783 0.0292 200 0.262 20.02 535.9 454.22 12.64 47.43 7.3 103.11 0.626 4.905 −25.78 3.941 0.0309 220 0.300 19.41 543.2 447.65 12.12 46.83 7.44 97.33 0.655 5.036 −24.80 3.815 0.0286 240 0.288 18.55 534.6 452.94 12.16 47.36 7.25 98.69 0.732 5.899 −25.41 3.960 0.0298 260 0.279 18.16 537.2 449.73 12.12 46.77 7.42 101.83 0.817 6.140 −25.81 3.824 0.0300 280 0.248 17.09 534.3 451.92 11.96 46.44 7.24 93.98 0.860 6.779 −27.81 3.888 0.0284 300 0.276 16.54 531.5 453.23 12.05 46.11 6.82 100.82 1.023 7.145 −27.27 4.099 0.0323 320 0.218 15.53 538.8 453.64 11.96 45.61 6.62 100.99 1.249 7.571 −28.66 4.175 0.0333 340 0.368 14.45 540.2 446.22 12.12 44.36 6.42 95.29 1.367 8.152 −29.02 4.192 0.0325 360 0.215 13.36 540.2 448.78 11.88 44.39 6.2 96.56 1.657 8.880 −30.16 4.338 0.0340 380 0.254 12.03 533.6 441.29 11.74 43.31 5.93 93.73 1.981 9.809 −31.44 4.431 0.0346 400 0.282 11.03 535.4 445.44 11.8 43.45 5.99 91.60 2.217 9.353 −31.32 4.400 0.0334 420 0.238 9.69 545.9 449.54 11.72 43.1 5.41 89.43 2.600 11.214 −32.33 4.833 0.0362 440 0.253 8.06 548.1 444.96 11.8 42.15 5.06 90.38 3.317 11.688 −31.80 5.047 0.0390 460 0.235 5.67 539.8 446.84 11.87 41.69 4.92 87.55 4.437 12.656 −33.81 5.134 0.0389 480 0.261 2.90 541.1 443.6 11.76 40.55 3.95 86.94 6.049 12.674 −35.07 6.221 0.0481 500 0.284 1.13 538.3 440.84 11.69 40.24 3.24 86.91 8.980 13.449 −25.59 7.542 0.0587 520 0.277 1.28 530.7 436.26 12.05 39.84 3.64 83.04 9.311 11.883 −23.87 6.647 0.0499 -
[1] Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X
[2] Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3
[3] Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8
[4] Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019
[5] Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v
[6] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[7] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984
[8] Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883
[9] Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3
[10] Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon [J]. Earth and Planetary Science Letters, 2004, 226(1-2): 225-241. doi: 10.1016/j.jpgl.2004.07.029
[11] Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 81-95. doi: 10.1016/j.margeo.2005.09.011
[12] Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022
[13] Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018
[14] Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012
[15] Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments [J]. Geology, 2001, 29(6): 555-558. doi: 10.1130/0091-7613(2001)029<0555:IFBSRN>2.0.CO;2
[16] Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.
[17] Sato H, Hayashi K I, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013
[18] Schrag D P, Higgins J A, Macdonald F A, et al. Authigenic carbonate and the history of the global carbon cycle [J]. Science, 2013, 339(6119): 540-543. doi: 10.1126/science.1229578
[19] Hu Y, Feng D, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: A case study from the Shenhu area of the South China Sea [J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805
[20] Ye H, Yang T, Zhu G R, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea [J]. Marine and Petroleum Geology, 2016, 75: 68-82. doi: 10.1016/j.marpetgeo.2016.03.010
[21] Feng J X, Yang S X, Liang J Q, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 77-86. doi: 10.1016/j.jseaes.2018.02.005
[22] Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021
[23] Masuzawa T, Handa N, Kitagawa H, et al. Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima island, Sagami bay, Japan [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 39-50. doi: 10.1016/0012-821X(92)90037-V
[24] Chen Y, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway [J]. Chemical Geology, 2010, 275(3-4): 127-138. doi: 10.1016/j.chemgeo.2010.04.013
[25] Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001
[26] Kim J H, Park M H, Chun J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane [J]. Geo-Marine Letters, 2011, 31(1): 37-49. doi: 10.1007/s00367-010-0214-y
[27] Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y
[28] Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09103.
[29] Komada T, Burdige D J, Magen C, et al. Recycling of organic matter in the sediments of Santa Monica basin, California borderland [J]. Aquatic Geochemistry, 2016, 22(5-6): 593-618. doi: 10.1007/s10498-016-9308-0
[30] 梁华催, 梁前勇, 胡钰, 等. 南海东沙海域浅表层柱状沉积物孔隙水地球化学特征及对冷泉流体活动的指示[J]. 地球化学, 2017, 46(4):333-344 doi: 10.3969/j.issn.0379-1726.2017.04.004
LIANG Huacui, LIANG Qianyong, HU Yu, et al. Pore water geochemistry of shallow surface sediments in the Dongsha area of the South China Sea and its implications for the activities of cold seep fluids [J]. Geochimica, 2017, 46(4): 333-344. doi: 10.3969/j.issn.0379-1726.2017.04.004
[31] Hu Y, Luo M, Chen L Y, et al. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints [J]. Journal of Asian Earth Sciences, 2018, 168: 87-95. doi: 10.1016/j.jseaes.2018.04.028
[32] Wu D D, Wu N Y, Zhang M, et al. Relationship of Sulfate-Methane Interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science, 2013, 38(6): 1309-1320.
[33] Liu H L, Yao Y J, Deng H. Geological and geophysical conditions for potential natural gas hydrate resources in southern South China Sea waters [J]. Journal of Earth Science, 2011, 22(6): 718-725. doi: 10.1007/s12583-011-0222-5
[34] 魏伟, 张金华, 魏兴华, 等. 我国南海天然气水合物资源潜力分析[J]. 地球物理学进展, 2012, 27(6):2646-2655 doi: 10.6038/j.issn.1004-2903.2012.06.044
WEI Wei, ZHANG Jinhua, WEI Xinghua, et al. Resource potential analysis of natural gas hydrate in South China Sea [J]. Progress in Geophysics, 2012, 27(6): 2646-2655. doi: 10.6038/j.issn.1004-2903.2012.06.044
[35] 张厚和, 刘鹏, 廖宗宝, 等. 南沙海域北康盆地油气勘探潜力[J]. 中国石油勘探, 2017, 22(3):40-48 doi: 10.3969/j.issn.1672-7703.2017.03.005
ZHANG Houhe, LIU Peng, LIAO Zongbao, et al. Oil and gas exploration potential in Beikang Basin, Nansha sea area [J]. China Petroleum Exploration, 2017, 22(3): 40-48. doi: 10.3969/j.issn.1672-7703.2017.03.005
[36] Trung N N. The gas hydrate potential in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 41-47. doi: 10.1016/j.petrol.2012.01.007
[37] 苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1):1-13 doi: 10.3969/j.issn.1000-8527.2005.01.001
SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on miocene through holocene sediments from the continental slope of the south china sea in correlation with possible distribution of gas hydrates [J]. Geoscience, 2005, 19(1): 1-13. doi: 10.3969/j.issn.1000-8527.2005.01.001
[38] Chen Z, Yan W, Tang X Z, et al. Magnetic susceptibility in surface sediments in the southern South China Sea and its implication for sub-sea methane venting [J]. Journal of Earth Science, 2009, 20(1): 193-204. doi: 10.1007/s12583-009-0019-y
[39] 张莉, 王嘹亮, 易海. 北康盆地的形成与演化[J]. 中国海上油气(地质), 2003, 17(4):245-248
ZHANG Li, WANG Liaoliang, YI Hai. The formation and evolution of Beikang Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(4): 245-248.
[40] 王嘹亮, 梁金强, 曾繁彩. 北康盆地新生代沉积特征[J]. 南海地质研究, 2000:58-72
WANG Liaoliang, LIANG Jinqiang, ZENG Fancai. Cenozoic sedimentation of Beikang Basin [J]. Gresearch of Eological South China Sea, 2000: 58-72.
[41] 刘振湖. 北康盆地古地热场与油气远景[J]. 海洋地质与第四纪地质, 2004, 24(2):79-84
LIU Zhenhu. Paleogeothermal field and petroleum prospect of the Beikang Basin, South China Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 79-84.
[42] 杨振, 张光学, 张莉, 等. 南海南部北康盆地生物礁的类型及油气勘探前景[J]. 中国地质, 2017, 44(3):428-438
YANG Zhen, ZHANG Guangxue, ZHANG Li, et al. The style and hydrocarbon prospects of reefs in the Beikang Basin, southern South China Sea [J]. Geology in China, 2017, 44(3): 428-438.
[43] 骆帅兵, 张莉, 周江羽, 等. 南海南部北康盆地烃源岩特征及发育模式探讨[J/OL]. 中国地质, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.
LUO Shuaibing, ZHANG Li, ZHOU Jiangyu, et al. Study on the characteristics and development patterns of source rocks in Beikang basin, South China Sea[J/OL]. Geology in China, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.
[44] 卢振权, 强祖基, 吴必豪. 利用卫星热红外遥感探测南海天然气水合物[J]. 地质学报, 2002, 76(1):101-106
LU Zhenquan, QIANG Zuji, WU Bihao. Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea [J]. Acta Geologica Sinica, 2002, 76(1): 101-106.
[45] 王淑红, 宋海斌, 颜文, 等. 南海南部天然气水合物稳定带厚度及资源量估算[J]. 天然气工业, 2005, 25(8):24-27, 4 doi: 10.3321/j.issn:1000-0976.2005.08.008
WANG Shuhong, SONG Haibin, YAN Wen, et al. Stable zone thickness and resource estimation of gas hydrate in southern South China Sea [J]. Natural Gas Industry, 2005, 25(8): 24-27, 4. doi: 10.3321/j.issn:1000-0976.2005.08.008
[46] 赵中贤, 孙珍, 陈广浩, 等. 南沙海域新生代构造特征和沉降演化[J]. 地球科学—中国地质大学学报, 2011, 36(5):815-822
ZHAO Zhongxian, SUN Zhen, CHEN Guanghao, et al. Cenozoic structural characteristics and subsidence evolution in NanSha [J]. Earth Science—Journal of China University of Geosciene, 2011, 36(5): 815-822.
[47] Wang P, Prell W L, Blum P. Initial Reports, 184[C]//Proc. Ocean Drill. Prog. 2000.
[48] Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. (Marine Geochemistry. Berlin, Germany: Springer, 2006: 73-124.
[49] Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9
[50] 陈法锦, 陈建芳, 金海燕等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345
CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of delta~(13) Corg in Surface Sediments with Sinking Particulate Matter in South China Sea and Implication for Reconstructing Paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.
[51] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3
[52] Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503
[53] Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[54] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1
[55] Ussler III W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.jpgl.2007.10.056
[56] Berner U, Faber E. Hydrocarhon gases in surface sediments of the South China Sea[M]//Jin X L. Marine Geology and Geophysics of the South China Sea. Beijing: China Ocean Press, 1990: 199-21l.
[57] Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631-2647. doi: 10.1016/S0016-7037(03)00199-6
[58] Borowski W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America [J]. Chemical Geology, 2004, 205(3-4): 311-346. doi: 10.1016/j.chemgeo.2003.12.022
[59] Coffin R, Hamdan L, Plummer R, et al. Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 977-987. doi: 10.1016/j.marpetgeo.2008.01.014
[60] Sun X L, Turchyn A V. Significant contribution of authigenic carbonate to marine carbon burial [J]. Nature Geoscience, 2014, 7(3): 201-204. doi: 10.1038/ngeo2070
[61] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007
[62] Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008
[63] Xu C L, Wu N Y, Sun Z L, et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough: Insights from pore-water geochemistry and numerical modeling [J]. Ore Geology Reviews, 2021, 129: 103909. doi: 10.1016/j.oregeorev.2020.103909
[64] Gonneea M E, Paytan A. Phase associations of barium in marine sediments [J]. Marine Chemistry, 2006, 100(1-2): 124-135. doi: 10.1016/j.marchem.2005.12.003