南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示

马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月. 南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101
引用本文: 马晓理, 刘丽华, 徐行, 金光荣, 魏雪芹, 翟梦月. 南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101
MA Xiaoli, LIU Lihua, XU Xing, JIN Guangrong, WEI Xueqin, ZHAI Mengyue. Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101
Citation: MA Xiaoli, LIU Lihua, XU Xing, JIN Guangrong, WEI Xueqin, ZHAI Mengyue. Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 112-125. doi: 10.16562/j.cnki.0256-1492.2020123101

南海南部浅表层柱状沉积物孔隙水地球化学特征对甲烷渗漏活动的指示

  • 基金项目: 国家自然科学基金项目“南海北部台西南盆地浅层沉积物中自生碳酸盐岩形成动力学模拟研究”(41776071);“广东特支计划”本土创新创业团队项目“南海天然气水合物成藏模式和开采目标区优选”(2019BT02L278-01);2019年省级促进经济发展专项资金项目“水合物开采安全评价预测技术研究”(GDOE[2019]A41);广东省海洋科技协同创新中心项目(20180207)
详细信息
    作者简介: 马晓理(1995—),女,硕士研究生,海洋地质专业,E-mail:maxl159@163.com
    通讯作者: 刘丽华(1968—),女,研究员,从事海洋地质及地球化学研究,E-mail:liulh@ms.giec.ac.cn
  • 中图分类号: P736.4

Pore water geochemistry of shallow surface sediments in the southern South China Sea and its implications for methane seepage activities

More Information
  • 海底沉积物孔隙水地球化学特征能快速响应甲烷渗漏活动及其生物地球化学过程,从而记录甲烷渗漏活动特征。对采自南海南部北康盆地的3个重力沉积柱状沉积物孔隙水样品(BH-H75、BH-H13Y和BH-H61)进行了甲烷浓度、溶解无机碳(DIC)和碳同位素(δ13CDIC)、阴离子(SO42−、Cl)以及主微量元素(Ca2+、Mg2+、Sr2+、Ba2+)等地球化学分析。(△DIC+△Ca2++△Mg2+)/△SO42−比率图解与δ13CDIC深度剖面特征揭示了有机质硫酸盐还原反应(OSR)和硫酸盐驱动-甲烷厌氧氧化反应(SD-AOM)在不同沉积柱中所占比例的不同,其中BH-H13Y沉积柱中OSR和SD-AOM共同存在;BH-H75沉积柱中OSR占主导;在BH-H61沉积柱中SD-AOM占主导,且其底部可能存在微生物产甲烷作用。硫酸盐浓度线性拟合关系指示BH-H13Y的硫酸盐-甲烷过渡带(SMTZ)的深度约为700 cmbsf。结合SO42−浓度、DIC浓度最大值和δ13CDIC最小值推测BH-H61的SMTZ深度约为480 cmbsf。BH-H61和BH-H13Y沉积柱中,较浅的SMTZ深度、上升的DIC浓度以及强烈负偏的δ13CDIC值指示研究区存在甲烷渗漏活动。此外,在BH-H61和BH-H13Y站位,硫酸盐浓度随深度降低的变化梯度在沉积柱下部较上部陡,指示向上迁移的甲烷通量在时间上逐渐增强。孔隙水中Ca2+、Mg2+、Sr2+浓度以及Mg/Ca、Sr/Ca比值变化特征指示研究区沉积物中可能有自生高镁方解石矿物生成;而BH-H61站位SMTZ界面以下,孔隙水中Ba2+浓度升高,指示了硫酸钡的溶解作用。

  • 加载中
  • 图 1  南海南部南沙海域北康盆地位置图[46]

    Figure 1. 

    图 2  研究区BH-H75、BH-H13Y、BH-H61站位沉积物孔隙水中阴离子组分、CH4、DIC及其δ13CDIC的深度剖面图

    Figure 2. 

    图 3  研究区BH-H75、BH-H13Y和BH-H61沉积物孔隙水中部分碱土金属元素浓度(Ca2+、Mg2+、Sr2+、Ba2+)、Sr/Ca与Mg/Ca比值深度剖面图

    Figure 3. 

    图 4  孔隙水中硫酸盐的消耗量与DIC的产生量(Ca2+、Mg2+离子校正后)的相关关系图

    Figure 4. 

    图 5  BH-H13Y、BH-H61的硫酸盐浓度深度剖面图和SMTZ深度与甲烷通量

    Figure 5. 

    图 6  研究区孔隙水中Mg/Ca- Sr/Ca

    Figure 6. 

    表 1  南海南部北康盆地海域采集的3个沉积柱信息

    Table 1.  Information of three sedimentary columns collected from the Beikang Basin in the southern SCS

    站位北纬东经水深/m岩心长度/cm海底温度/℃校准地温梯度/(K/km)
    BH-H756.8482°112.8052°1 6633972.82688.9
    BH-H13Y6.7107°111.4839°1 8674002.6187.2
    BH-H616.4809°111.7519°1 9385182.58536.1
    下载: 导出CSV

    表 2  BH-H75、BH-H13Y和BH-H61站位沉积物孔隙水中甲烷浓度、阴离子(SO42−、Cl)、主微量元素(Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+)、DIC和δ13CDIC、Sr/Ca与Mg/Ca比值特征

    Table 2.  Features of methane concentration, anions (SO42−、Cl), major trace elements (Na+、K+、Ca2+、Mg2+、Sr2+、Ba2+), DIC and δ13CDIC, Sr/Ca and Mg/Ca ratios of sediment pore water in BH-H75, BH-H13Y and BH-H61 sites

    站位取样深度/
    cmbsf
    CH4/
    mM
    SO42−/
    mM
    Cl/
    mM
    Na+/
    mM
    K+/
    mM
    Mg2+/
    mM
    Ca2+/
    mM
    Sr2+/
    μM
    Ba2+/
    μM
    DIC/
    mM
    δ13CDIC/
    Mg/CaSr/Ca
    BH-H75200.17626.99540.4443.312.4248.549.09110.020.7632.347−7.233.2380.0265
    400.20026.80531.5442.7512.4748.419.17112.070.5172.217−6.263.2020.0267
    600.17925.87529.6444.5712.6948.499.28107.030.5272.282−6.653.1670.0252
    800.16125.94534.5444.8112.8548.389.24109.980.4762.455−7.963.1740.0260
    1000.17226.22541.9445.5312.8948.368.89108.240.4732.593−6.733.2990.0266
    1200.16225.19536.1442.1911.6948.089.03140.370.6043.449−10.643.2280.0340
    1400.17024.81532.3443.8712.1748.139.18111.290.4673.309−9.443.1810.0265
    1600.24824.78541.5444.4412.348.249.01107.270.4533.657−10.323.2480.0260
    1800.18225.10554.8441.6612.0447.819.05105.170.4773.780−10.523.2030.0254
    2000.20424.21541.9446.0612.2848.39.16107.660.4624.059−10.903.1990.0257
    2200.20323.83543.1442.0912.0147.748.71105.590.5544.267−10.583.3250.0265
    2400.19423.06533.2443.1612.1847.69.24104.660.5224.072−10.753.1250.0248
    2600.25122.75536.6443.312.0647.598.53105.720.5194.355−11.653.3830.0271
    2800.20022.01531.7436.1312.0746.528.57102.990.6344.786−10.853.2920.0263
    3000.23121.81539.2441.4212.0446.98.42105.080.5725.251−12.303.3790.0273
    3200.24121.09541.7437.6611.8546.27.98102.240.5595.678−12.773.5100.0280
    3400.23020.21539.2446.3212.1946.868.11102.580.5915.856−12.633.5020.0276
    3600.25919.18537.5443.8612.0846.499.69102.430.5926.364−13.602.9110.0231
    3800.22718.50540.9448.8312.2946.617.9101.950.6317.210−13.783.5780.0282
    4000.25517.49535.6444.6112.0545.947.5698.680.7697.132−14.293.6850.0285
    BH-H13Y200.18227.09543.43457.4512.6749.89.52110.950.6952.524−10.903.1710.0255
    400.22326.65541.46457.7312.7649.639.58114.230.6302.461−8.373.1430.0261
    600.24926.47550.53454.4612.5549.239.46109.030.5432.892−10.273.1560.0252
    800.21325.77544.72447.6112.2648.679.13108.590.5201.942−11.843.2310.0260
    960.22325.52544.89456.7512.649.599.29108.430.4913.082−13.233.2370.0255
    1200.14825.21547.51455.2212.9649.459.11108.590.4732.766−14.233.2930.0261
    1400.15224.63543.91451.6512.5648.838.84106.810.4463.428−15.443.3500.0264
    1600.15824.47547.45451.4112.4848.949.02106.870.4363.769−16.123.2890.0259
    1800.18224.03545.01457.1812.4449.178.82108.910.4473.884−17.323.3800.0270
    1950.19224.25556.92452.6812.3148.788.62107.750.5433.998−17.943.4310.0273
    2200.17922.71543.81452.4912.3248.378.67104.890.4904.095−18.023.3840.0265
    2400.18422.29540.84451.2512.2248.068.94104.560.4614.686−19.493.2590.0256
    2600.24421.95546.77448.8712.0347.78.51103.900.4834.713−20.543.4010.0267
    2800.23021.15543.46449.3612.0147.188.39103.500.5084.991−21.723.4090.0270
    BH-H13Y3000.21520.11537.08447.421246.518.32102.630.5395.861−22.493.3910.0270
    3200.21219.46546.95453.521247.198.29103.310.6045.592−22.873.4530.0272
    3400.28318.10541.56449.2211.8546.318103.420.6456.344−25.373.5090.0282
    3600.23516.78535.98449.711.845.877.99102.000.6937.263−26.093.4840.0279
    3800.27615.59533.93444.8212.6645.197.5597.010.7547.374−26.963.6280.0281
    4000.26714.82547.52449.0711.5645.217.9299.010.8138.463−28.403.4620.0273
    BH-H61200.24725.84538.4454.113.0949.288.96104.350.5582.422−13.083.3350.0255
    400.26225.64551.9451.7713.1448.4210.6101.930.5232.766−15.332.7690.0210
    600.31624.42542.6453.0913.0148.488.01106.130.5433.096−17.093.6720.0290
    800.27323.65542.6451.8412.8148.168.34105.040.5273.491−19.053.5000.0275
    1000.25423.18541.5450.512.8747.647.59102.040.5523.332−19.523.8080.0294
    1200.24722.35536.0450.5712.1348.437.97102.090.5374.478−21.953.6850.0280
    1400.29221.72536.4453.8712.2848.428.05103.680.5685.051−22.733.6470.0282
    1600.25721.32540.5454.512.348.277.91106.740.6554.880−22.503.7020.0295
    1800.27520.74539.3456.8312.4748.137.72102.960.5875.396−25.103.7830.0292
    2000.26220.02535.9454.2212.6447.437.3103.110.6264.905−25.783.9410.0309
    2200.30019.41543.2447.6512.1246.837.4497.330.6555.036−24.803.8150.0286
    2400.28818.55534.6452.9412.1647.367.2598.690.7325.899−25.413.9600.0298
    2600.27918.16537.2449.7312.1246.777.42101.830.8176.140−25.813.8240.0300
    2800.24817.09534.3451.9211.9646.447.2493.980.8606.779−27.813.8880.0284
    3000.27616.54531.5453.2312.0546.116.82100.821.0237.145−27.274.0990.0323
    3200.21815.53538.8453.6411.9645.616.62100.991.2497.571−28.664.1750.0333
    3400.36814.45540.2446.2212.1244.366.4295.291.3678.152−29.024.1920.0325
    3600.21513.36540.2448.7811.8844.396.296.561.6578.880−30.164.3380.0340
    3800.25412.03533.6441.2911.7443.315.9393.731.9819.809−31.444.4310.0346
    4000.28211.03535.4445.4411.843.455.9991.602.2179.353−31.324.4000.0334
    4200.2389.69545.9449.5411.7243.15.4189.432.60011.214−32.334.8330.0362
    4400.2538.06548.1444.9611.842.155.0690.383.31711.688−31.805.0470.0390
    4600.2355.67539.8446.8411.8741.694.9287.554.43712.656−33.815.1340.0389
    4800.2612.90541.1443.611.7640.553.9586.946.04912.674−35.076.2210.0481
    5000.2841.13538.3440.8411.6940.243.2486.918.98013.449−25.597.5420.0587
    5200.2771.28530.7436.2612.0539.843.6483.049.31111.883−23.876.6470.0499
    下载: 导出CSV
  • [1]

    Dickens G R. Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor [J]. Earth and Planetary Science Letters, 2003, 213(3-4): 169-183. doi: 10.1016/S0012-821X(03)00325-X

    [2]

    Luff R, Wallmann K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421. doi: 10.1016/S0016-7037(03)00127-3

    [3]

    Egger M, Riedinger N, Mogollón J M, et al. Global diffusive fluxes of methane in marine sediments [J]. Nature Geoscience, 2018, 11(6): 421-425. doi: 10.1038/s41561-018-0122-8

    [4]

    Joye S B, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps [J]. Chemical Geology, 2004, 205(3-4): 219-238. doi: 10.1016/j.chemgeo.2003.12.019

    [5]

    Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2): 486-513. doi: 10.1021/cr050362v

    [6]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [7]

    Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184-187. doi: 10.1126/science.1169984

    [8]

    Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464(7288): 543-548. doi: 10.1038/nature08883

    [9]

    Borowski W S, Paull C K, Ussler W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates [J]. Marine Geology, 1999, 159(1-4): 131-154. doi: 10.1016/S0025-3227(99)00004-3

    [10]

    Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon [J]. Earth and Planetary Science Letters, 2004, 226(1-2): 225-241. doi: 10.1016/j.jpgl.2004.07.029

    [11]

    Gay A, Lopez M, Ondreas H, et al. Seafloor facies related to upward methane flux within a Giant Pockmark of the Lower Congo Basin [J]. Marine Geology, 2006, 226(1-2): 81-95. doi: 10.1016/j.margeo.2005.09.011

    [12]

    Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 860-872. doi: 10.1016/j.marpetgeo.2008.01.022

    [13]

    Luo M, Chen L Y, Wang S H, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea [J]. Marine and Petroleum Geology, 2013, 48: 247-259. doi: 10.1016/j.marpetgeo.2013.08.018

    [14]

    Hu Y, Feng D, Liang Q Y, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 84-94. doi: 10.1016/j.dsr2.2015.06.012

    [15]

    Habicht K S, Canfield D E. Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments [J]. Geology, 2001, 29(6): 555-558. doi: 10.1130/0091-7613(2001)029<0555:IFBSRN>2.0.CO;2

    [16]

    Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

    [17]

    Sato H, Hayashi K I, Ogawa Y, et al. Geochemistry of deep sea sediments at cold seep sites in the Nankai Trough: Insights into the effect of anaerobic oxidation of methane [J]. Marine Geology, 2012, 323-325: 47-55. doi: 10.1016/j.margeo.2012.07.013

    [18]

    Schrag D P, Higgins J A, Macdonald F A, et al. Authigenic carbonate and the history of the global carbon cycle [J]. Science, 2013, 339(6119): 540-543. doi: 10.1126/science.1229578

    [19]

    Hu Y, Feng D, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: A case study from the Shenhu area of the South China Sea [J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805

    [20]

    Ye H, Yang T, Zhu G R, et al. Pore water geochemistry in shallow sediments from the northeastern continental slope of the South China sea [J]. Marine and Petroleum Geology, 2016, 75: 68-82. doi: 10.1016/j.marpetgeo.2016.03.010

    [21]

    Feng J X, Yang S X, Liang J Q, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea [J]. Journal of Asian Earth Sciences, 2018, 168: 77-86. doi: 10.1016/j.jseaes.2018.02.005

    [22]

    Xu C L, Wu N Y, Sun Z L, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough [J]. Marine and Petroleum Geology, 2018, 98: 306-315. doi: 10.1016/j.marpetgeo.2018.08.021

    [23]

    Masuzawa T, Handa N, Kitagawa H, et al. Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima island, Sagami bay, Japan [J]. Earth and Planetary Science Letters, 1992, 110(1-4): 39-50. doi: 10.1016/0012-821X(92)90037-V

    [24]

    Chen Y, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway [J]. Chemical Geology, 2010, 275(3-4): 127-138. doi: 10.1016/j.chemgeo.2010.04.013

    [25]

    Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11-13): 1216-1239. doi: 10.1016/j.dsr2.2007.04.001

    [26]

    Kim J H, Park M H, Chun J H, et al. Molecular and isotopic signatures in sediments and gas hydrate of the central/southwestern Ulleung Basin: high alkalinity escape fuelled by biogenically sourced methane [J]. Geo-Marine Letters, 2011, 31(1): 37-49. doi: 10.1007/s00367-010-0214-y

    [27]

    Hong W L, Torres M E, Kim J H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin [J]. Biogeochemistry, 2013, 115(1-3): 129-148. doi: 10.1007/s10533-012-9824-y

    [28]

    Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: A numerical modeling perspective [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09103.

    [29]

    Komada T, Burdige D J, Magen C, et al. Recycling of organic matter in the sediments of Santa Monica basin, California borderland [J]. Aquatic Geochemistry, 2016, 22(5-6): 593-618. doi: 10.1007/s10498-016-9308-0

    [30]

    梁华催, 梁前勇, 胡钰, 等. 南海东沙海域浅表层柱状沉积物孔隙水地球化学特征及对冷泉流体活动的指示[J]. 地球化学, 2017, 46(4):333-344 doi: 10.3969/j.issn.0379-1726.2017.04.004

    LIANG Huacui, LIANG Qianyong, HU Yu, et al. Pore water geochemistry of shallow surface sediments in the Dongsha area of the South China Sea and its implications for the activities of cold seep fluids [J]. Geochimica, 2017, 46(4): 333-344. doi: 10.3969/j.issn.0379-1726.2017.04.004

    [31]

    Hu Y, Luo M, Chen L Y, et al. Methane source linked to gas hydrate system at hydrate drilling areas of the South China Sea: Porewater geochemistry and numerical model constraints [J]. Journal of Asian Earth Sciences, 2018, 168: 87-95. doi: 10.1016/j.jseaes.2018.04.028

    [32]

    Wu D D, Wu N Y, Zhang M, et al. Relationship of Sulfate-Methane Interface (SMI), methane flux and the underlying gas hydrate in Dongsha Area, Northern South China Sea [J]. Earth Science, 2013, 38(6): 1309-1320.

    [33]

    Liu H L, Yao Y J, Deng H. Geological and geophysical conditions for potential natural gas hydrate resources in southern South China Sea waters [J]. Journal of Earth Science, 2011, 22(6): 718-725. doi: 10.1007/s12583-011-0222-5

    [34]

    魏伟, 张金华, 魏兴华, 等. 我国南海天然气水合物资源潜力分析[J]. 地球物理学进展, 2012, 27(6):2646-2655 doi: 10.6038/j.issn.1004-2903.2012.06.044

    WEI Wei, ZHANG Jinhua, WEI Xinghua, et al. Resource potential analysis of natural gas hydrate in South China Sea [J]. Progress in Geophysics, 2012, 27(6): 2646-2655. doi: 10.6038/j.issn.1004-2903.2012.06.044

    [35]

    张厚和, 刘鹏, 廖宗宝, 等. 南沙海域北康盆地油气勘探潜力[J]. 中国石油勘探, 2017, 22(3):40-48 doi: 10.3969/j.issn.1672-7703.2017.03.005

    ZHANG Houhe, LIU Peng, LIAO Zongbao, et al. Oil and gas exploration potential in Beikang Basin, Nansha sea area [J]. China Petroleum Exploration, 2017, 22(3): 40-48. doi: 10.3969/j.issn.1672-7703.2017.03.005

    [36]

    Trung N N. The gas hydrate potential in the South China Sea [J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 41-47. doi: 10.1016/j.petrol.2012.01.007

    [37]

    苏新, 陈芳, 于兴河, 等. 南海陆坡中新世以来沉积物特性与气体水合物分布初探[J]. 现代地质, 2005, 19(1):1-13 doi: 10.3969/j.issn.1000-8527.2005.01.001

    SU Xin, CHEN Fang, YU Xinghe, et al. A pilot study on miocene through holocene sediments from the continental slope of the south china sea in correlation with possible distribution of gas hydrates [J]. Geoscience, 2005, 19(1): 1-13. doi: 10.3969/j.issn.1000-8527.2005.01.001

    [38]

    Chen Z, Yan W, Tang X Z, et al. Magnetic susceptibility in surface sediments in the southern South China Sea and its implication for sub-sea methane venting [J]. Journal of Earth Science, 2009, 20(1): 193-204. doi: 10.1007/s12583-009-0019-y

    [39]

    张莉, 王嘹亮, 易海. 北康盆地的形成与演化[J]. 中国海上油气(地质), 2003, 17(4):245-248

    ZHANG Li, WANG Liaoliang, YI Hai. The formation and evolution of Beikang Basin [J]. China Offshore Oil and Gas (Geology), 2003, 17(4): 245-248.

    [40]

    王嘹亮, 梁金强, 曾繁彩. 北康盆地新生代沉积特征[J]. 南海地质研究, 2000:58-72

    WANG Liaoliang, LIANG Jinqiang, ZENG Fancai. Cenozoic sedimentation of Beikang Basin [J]. Gresearch of Eological South China Sea, 2000: 58-72.

    [41]

    刘振湖. 北康盆地古地热场与油气远景[J]. 海洋地质与第四纪地质, 2004, 24(2):79-84

    LIU Zhenhu. Paleogeothermal field and petroleum prospect of the Beikang Basin, South China Sea [J]. Marine Geology & Quaternary Geology, 2004, 24(2): 79-84.

    [42]

    杨振, 张光学, 张莉, 等. 南海南部北康盆地生物礁的类型及油气勘探前景[J]. 中国地质, 2017, 44(3):428-438

    YANG Zhen, ZHANG Guangxue, ZHANG Li, et al. The style and hydrocarbon prospects of reefs in the Beikang Basin, southern South China Sea [J]. Geology in China, 2017, 44(3): 428-438.

    [43]

    骆帅兵, 张莉, 周江羽, 等. 南海南部北康盆地烃源岩特征及发育模式探讨[J/OL]. 中国地质, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.

    LUO Shuaibing, ZHANG Li, ZHOU Jiangyu, et al. Study on the characteristics and development patterns of source rocks in Beikang basin, South China Sea[J/OL]. Geology in China, 2020: 1-21. (2020-04-20). https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CAPJLAST&filename=DIZI20200417002&v=MDgzMjlOSE1xNDVDWk9zTll3OU16bVJuNmo1N1QzZmxxV00wQ0xMN1I3cWRadVpzRkMvbFY3M0tKVmc9SVNUUlo3RzRI.

    [44]

    卢振权, 强祖基, 吴必豪. 利用卫星热红外遥感探测南海天然气水合物[J]. 地质学报, 2002, 76(1):101-106

    LU Zhenquan, QIANG Zuji, WU Bihao. Exploring gas hydrates by satellite-based thermal infrared remote sensing in the South China Sea [J]. Acta Geologica Sinica, 2002, 76(1): 101-106.

    [45]

    王淑红, 宋海斌, 颜文, 等. 南海南部天然气水合物稳定带厚度及资源量估算[J]. 天然气工业, 2005, 25(8):24-27, 4 doi: 10.3321/j.issn:1000-0976.2005.08.008

    WANG Shuhong, SONG Haibin, YAN Wen, et al. Stable zone thickness and resource estimation of gas hydrate in southern South China Sea [J]. Natural Gas Industry, 2005, 25(8): 24-27, 4. doi: 10.3321/j.issn:1000-0976.2005.08.008

    [46]

    赵中贤, 孙珍, 陈广浩, 等. 南沙海域新生代构造特征和沉降演化[J]. 地球科学—中国地质大学学报, 2011, 36(5):815-822

    ZHAO Zhongxian, SUN Zhen, CHEN Guanghao, et al. Cenozoic structural characteristics and subsidence evolution in NanSha [J]. Earth Science—Journal of China University of Geosciene, 2011, 36(5): 815-822.

    [47]

    Wang P, Prell W L, Blum P. Initial Reports, 184[C]//Proc. Ocean Drill. Prog. 2000.

    [48]

    Schulz H D. Quantification of early diagenesis: dissolved constituents in pore water and signals in the solid phase[M]//Schulz H D, Zabel M. (Marine Geochemistry. Berlin, Germany: Springer, 2006: 73-124.

    [49]

    Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts in continental margin sediments: A new look at barium remobilization in the zone of sulfate reduction and formation of heavy barites in diagenetic fronts [J]. Chemical Geology, 1996, 127(1-3): 125-139. doi: 10.1016/0009-2541(95)00090-9

    [50]

    陈法锦, 陈建芳, 金海燕等. 南海表层沉积物与沉降颗粒物中有机碳的δ13C对比研究及其古环境再造意义[J]. 沉积学报, 2012, 30(2):340-345

    CHEN Fajin, CHEN Jianfang, JIN Haiyan, et al. Correlation of delta~(13) Corg in Surface Sediments with Sinking Particulate Matter in South China Sea and Implication for Reconstructing Paleo-environment [J]. Acta Sedimentologica Sinica, 2012, 30(2): 340-345.

    [51]

    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1-3): 291-314. doi: 10.1016/S0009-2541(99)00092-3

    [52]

    Claypool G E, Kvenvolden K A. Methane and other hydrocarbon gases in marine sediment [J]. Annual Review of Earth and Planetary Sciences, 1983, 11: 299-327. doi: 10.1146/annurev.ea.11.050183.001503

    [53]

    Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate [J]. Geology, 1996, 24(7): 655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [54]

    Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: Present and past methane fluxes through a large gas hydrate reservoir [J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529-543. doi: 10.1016/S0016-7037(00)00556-1

    [55]

    Ussler III W, Paull C K. Rates of anaerobic oxidation of methane and authigenic carbonate mineralization in methane-rich deep-sea sediments inferred from models and geochemical profiles [J]. Earth and Planetary Science Letters, 2008, 266(3-4): 271-287. doi: 10.1016/j.jpgl.2007.10.056

    [56]

    Berner U, Faber E. Hydrocarhon gases in surface sediments of the South China Sea[M]//Jin X L. Marine Geology and Geophysics of the South China Sea. Beijing: China Ocean Press, 1990: 199-21l.

    [57]

    Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments [J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631-2647. doi: 10.1016/S0016-7037(03)00199-6

    [58]

    Borowski W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America [J]. Chemical Geology, 2004, 205(3-4): 311-346. doi: 10.1016/j.chemgeo.2003.12.022

    [59]

    Coffin R, Hamdan L, Plummer R, et al. Analysis of methane and sulfate flux in methane-charged sediments from the Mississippi Canyon, Gulf of Mexico [J]. Marine and Petroleum Geology, 2008, 25(9): 977-987. doi: 10.1016/j.marpetgeo.2008.01.014

    [60]

    Sun X L, Turchyn A V. Significant contribution of authigenic carbonate to marine carbon burial [J]. Nature Geoscience, 2014, 7(3): 201-204. doi: 10.1038/ngeo2070

    [61]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: Implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    [62]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [63]

    Xu C L, Wu N Y, Sun Z L, et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough: Insights from pore-water geochemistry and numerical modeling [J]. Ore Geology Reviews, 2021, 129: 103909. doi: 10.1016/j.oregeorev.2020.103909

    [64]

    Gonneea M E, Paytan A. Phase associations of barium in marine sediments [J]. Marine Chemistry, 2006, 100(1-2): 124-135. doi: 10.1016/j.marchem.2005.12.003

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2389
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2020-12-31
修回日期:  2021-03-07
刊出日期:  2021-10-28

目录