西南印度洋中脊岩石地球化学特征及其岩浆作用研究

孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲. 西南印度洋中脊岩石地球化学特征及其岩浆作用研究[J]. 海洋地质与第四纪地质, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701
引用本文: 孙国洪, 田丽艳, 李小虎, 张汉羽, 陈凌轩, 刘红玲. 西南印度洋中脊岩石地球化学特征及其岩浆作用研究[J]. 海洋地质与第四纪地质, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701
SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701
Citation: SUN Guohong, TIAN Liyan, LI Xiaohu, ZHANG Hanyu, CHEN Lingxuan, LIU Hongling. A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 126-138. doi: 10.16562/j.cnki.0256-1492.2021021701

西南印度洋中脊岩石地球化学特征及其岩浆作用研究

  • 基金项目: 国家自然科学基金“南海初始洋壳(IODP1502B钻孔)的Li-Mg-O同位素组成:对洋壳蚀变过程中同位素组成和分馏行为的初步研究”(41876044);中国科学院深海科学与工程研究所知识创新工程领域前沿项目“冰岛和雷琼半岛OIB型火山熔岩的地球化学及岩石成因对比研究及其对地球动力学背景的指示”(Y570031QY1)
详细信息
    作者简介: 孙国洪(1995—),男,硕士研究生,主要从事海底岩石学及地球化学研究,E-mail:sungh@idsse.ac.cn
    通讯作者: 田丽艳(1979—),女,博士,副研究员,主要从事海底岩石学及地球化学研究,E-mail:lytian@idsse.ac.cn
  • 中图分类号: P736.4

A review of studies on the magmatism at Southwest Indian Ridge from petrological and geochemical perspectives

More Information
  • 作为超慢速扩张脊的代表,西南印度洋中脊(SWIR)因其独一无二的地形地貌特征、洋壳结构、洋壳增生机制、岩浆和热液活动以及深部动力学过程,近30年来成为国内外研究的热点区域。基于近年来对SWIR玄武岩、辉长岩及橄榄岩的岩石学和地球化学研究成果总结,重点探讨了沿SWIR轴向(大尺度)以及单个洋脊分段(小尺度)的岩石地球化学变化特征及其影响因素,阐述了SWIR的岩浆供应及洋壳增生模式。其中,在9°~16°E斜向扩张脊,以构造作用为主的洋脊扩张模式导致了更宽的洋壳增生带和显著的地球化学异常;而在50°~51°E脊段,发育了强烈的火山活动,其成因机制包括克洛泽热点与洋中脊相互作用、微热点、古老熔融事件的残留地幔再熔融等几种观点。此外,西南印度洋中脊龙旂热液区(~49.7°E)的最新研究表明,其热液循环路径与拆离断层的发育密不可分,热液流体循环最深可达莫霍面以下6 km。因此,在今后的一段时间,应进一步加强SWIR不同空间尺度地幔源区性质、洋中脊构造与岩浆作用过程、热点-洋中脊相互作用和岩浆-热液活动与成矿等主要科学问题的研究。

  • 加载中
  • 图 1  西南印度洋地理位置及地形图

    Figure 1. 

    图 2  西南印度洋中脊玄武岩沿洋脊延伸方向同位素比值变化图

    Figure 2. 

    图 3  ODP 735B孔辉长岩随深度变化剖面

    Figure 3. 

    图 4  西南印度洋中脊橄榄岩和对应的洋中脊玄武岩Nd同位素组成沿洋中脊延伸方向变化特征[48]

    Figure 4. 

    图 5  西南印度洋中脊不同脊段的岩浆供应及地壳增生模式

    Figure 5. 

    表 1  SWIR断裂带全称及其缩写[7]

    Table 1.  The main parameters of fracture zones in SWIR[7]

    断裂名称(缩写) 走向 断距/km 活动时期/MaBP 东经
    Bouvet (BO) NE 65° 240 0~50 1°55′
    Islas Orcadas (IO) NE 65° 100 0~70 6°03′
    Shaka (SH) NE 60° 180 0~70 9°30′
    DuToit (DT) NE 35° 160 0~70 25°25′
    Andrew Bain (AB) NE 40° 720 0~>120 32°18′
    Marion (MA) NE 30° 125 0~>120 33°40′
    Prince Edward (PE) NE 25° 155 0~>120 35°30′
    Eric Simpson (ES) NE 18° 100 0~60 39°20′
    Discovery Ⅰ(D Ⅰ) NE 10° 320 0~60 41°50′
    Discovery Ⅱ(D Ⅱ) NE 10° 320 0~60 42°30′
    Indomed (IN) NE 15° 135 0~60 46°00′
    Gallieni (GA) NE 10° 90 0~60 52°20′
    Atlantis Ⅱ(A Ⅱ) NE 5° 190 0~50 57°00′
    Melville (MEL) NE 5° 125 0~50 60°45′
    下载: 导出CSV

    表 2  SWIR大洋核杂岩分布信息

    Table 2.  Occurrences of oceanic core complexes (OCCs) in SWIR

    名称或位置 全扩张速率/(mm/a) 岩石类型 相关热液区 主要参考文献
    Dragon Flag
    (49°39′E)
    14 玄武岩,蛇纹石化橄榄岩 Dragon Flag Zhao等[34]
    53°E 15 蛇纹石化方辉橄榄岩、辉绿岩、辉长岩 Zhou和Dick[10]
    Atlantis Bank (57°16′E) 14 辉长岩为主,蛇纹石化橄榄岩 Baines等[4]
    FUJI Dome
    (63°45′E)
    14 玄武岩、辉长岩、蛇纹石化方辉橄榄岩 Mont Jourdanne Searle等[5]
    61°12′~65°30′E 14 未采到样品 Cannat等[6]
    下载: 导出CSV
  • [1]

    Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge [J]. Nature, 2003, 426(6965): 405-412. doi: 10.1038/nature02128

    [2]

    Sauter D, Cannat M. The ultraslow spreading southwest Indian ridge[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington, D.C.: American Geophysical Union, 2010, 88: 153-173.

    [3]

    Smith D K, Escartin J, Schouten H, et al. Active long-lived faults emerging along slow-spreading Mid-Ocean Ridges [J]. Oceanography, 2012, 25(1): 94-99. doi: 10.5670/oceanog.2012.07

    [4]

    Baines A G, Cheadle M J, Dick H J B, et al. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, southwest Indian Ridge [J]. Geology, 2003, 31(12): 1105-1108. doi: 10.1130/G19829.1

    [5]

    Searle R C, Cannat M, Fujioka K, et al. FUJI Dome: A large detachment fault near 64° E on the very slow-spreading southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2003, 4(8): 9105.

    [6]

    Cannat M, Sauter D, Escartin J, et al. Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges [J]. Earth and Planetary Science Letters, 2009, 288(1-2): 174-183. doi: 10.1016/j.jpgl.2009.09.020

    [7]

    索艳慧.印度洋构造-岩浆过程:剩余地幔布格重力异常证据[D].中国海洋大学博士学位论文,2014

    SUO Yanhui.Tectonic-magmatic processes of the Indian Ocean:Evidence on the residual mantle Bouguer gravity anomaly[D].Doctor Dissertation of Ocean University of China,2014.

    [8]

    Carbotte S M, Smith D K, Cannat M, et al. Tectonic and magmatic segmentation of the Global Ocean Ridge System: A synthesis of observations [J]. Geological Society, London, Special Publications, 2016, 420(1): 249-295. doi: 10.1144/SP420.5

    [9]

    余星, 迪克·亨利, 李小虎, 等. 西南印度洋中脊地质构造特征及其地球动力学意义[J]. 地球物理学报, 2020, 63(10):3585-3603 doi: 10.6038/cjg2020N0230

    YU Xing, DICK H, LI Xiaohu, et al. The geotectonic features of the Southwest Indian Ridge and its geodynamic implications [J]. Chinese Journal of Geophysics, 2020, 63(10): 3585-3603. doi: 10.6038/cjg2020N0230

    [10]

    Zhou H Y, Dick H J B. Thin crust as evidence for depleted mantle supporting the Marion Rise [J]. Nature, 2013, 494(7436): 195-200. doi: 10.1038/nature11842

    [11]

    Li J B, Jian H C, Chen Y J, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge [J]. Geophysical Research Letters, 2015, 42(8): 2656-2663. doi: 10.1002/2014GL062521

    [12]

    Gao C G, Dick H J B, Liu Y, et al. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise [J]. Lithos, 2016, 246-247: 48-60. doi: 10.1016/j.lithos.2015.12.007

    [13]

    Sauter D, Cannat M, Meyzen C M, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot? [J]. Geophysical Journal International, 2009, 179(2): 687-699. doi: 10.1111/j.1365-246X.2009.04308.x

    [14]

    Yang A Y, Zhao T P, Zhou M F, et al. Isotopically enriched N‐MORB: A new geochemical signature of off‐axis plume‐ridge interaction-A case study at 50°28′E, Southwest Indian Ridge [J]. Journal of Geophysical Research:Solid Earth, 2017, 122(1): 191-213. doi: 10.1002/2016JB013284

    [15]

    Breton T, Nauret F, Pichat S, et al. Geochemical heterogeneities within the Crozet hotspot [J]. Earth and Planetary Science Letters, 2013, 376: 126-136. doi: 10.1016/j.jpgl.2013.06.020

    [16]

    Yu X, Dick H J B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2020, 531: 116002. doi: 10.1016/j.jpgl.2019.116002

    [17]

    Patriat P, Sauter D, Munschy M, et al. A survey of the southwest Indian ridge axis between Atlantis II fracture zone and the Indian Ocean Triple Junction: regional setting and large scale segmentation [J]. Marine Geophysical Researches, 1997, 19(6): 457-480. doi: 10.1023/A:1004312623534

    [18]

    Standish J J, Dick H J B, Michael P J, et al. MORB generation beneath the ultraslow spreading Southwest Indian Ridge (9°–25°E): Major element chemistry and the importance of process versus source [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(5): Q05004.

    [19]

    Patriat P, Segoufin J. Reconstruction of the central Indian Ocean [J]. Tectonophysics, 1988, 155(1-4): 211-234. doi: 10.1016/0040-1951(88)90267-3

    [20]

    Cannat M, Rommevaux-Jestin C, Sauter D, et al. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E) [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B10): 22825-22843. doi: 10.1029/1999JB900195

    [21]

    Niu X W, Ruan A G, Li J B, et al. Along‐axis variation in crustal thickness at the ultraslow spreading Southwest Indian Ridge (50° E) From A wide‐angle seismic experiment [J]. Geochemistry, Geophysics, Geosystems, 2015, 16(2): 468-485. doi: 10.1002/2014GC005645

    [22]

    Sauter D, Patriat P, Rommevaux-Jestin C, et al. The Southwest Indian Ridge between 49°15'E and 57°E: focused accretion and magma redistribution [J]. Earth and Planetary Science Letters, 2001, 192(3): 303-317. doi: 10.1016/S0012-821X(01)00455-1

    [23]

    Escrig S, Capmas F, Dupré B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts [J]. Nature, 2004, 431(7004): 59-63. doi: 10.1038/nature02904

    [24]

    Hanan B B, Blichert-Toft J, Hemond C, et al. Pb and Hf isotope variations along the Southeast Indian Ridge and the dynamic distribution of MORB source domains in the upper mantle [J]. Earth and Planetary Science Letters, 2013, 375: 196-208. doi: 10.1016/j.jpgl.2013.05.028

    [25]

    Janney P E, Le Roex A P, Carlson R W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E) [J]. Journal of Petrology, 2005, 46(12): 2427-2464. doi: 10.1093/petrology/egi060

    [26]

    Janney P E, Le Roex A P. Mantle heterogeneity and mixing beneath the Bouvet triple junction region: Hf isotope constraints from the westernmost southwest Indian ridge (0-11°E)[C]//AGU Fall Meeting Abstracts. AGU, 2013.

    [27]

    Meyzen C M, Ludden J N, Humler E, et al. New insights into the origin and distribution of the Dupal isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2005, 6(11): Q11K11.

    [28]

    Meyzen C M, Blichert-Toft J, Ludden J N, et al. Isotopic portrayal of the Earth’s upper mantle flow field [J]. Nature, 2007, 447(7148): 1069-1074. doi: 10.1038/nature05920

    [29]

    Mahoney J, LE Roex A P, Peng Z, et al. Southwestern limits of Indian Ocean ridge mantle and the origin of Low 206Pb/204Pb mid‐ocean ridge basalt: Isotope systematics of the central Southwest Indian Ridge (17°-50° E) [J]. Journal of Geophysical Research:Solid Earth, 1992, 97(B13): 19771-19790. doi: 10.1029/92JB01424

    [30]

    Kurz M D, Le Roex A, Dick H J B. Isotope geochemistry of the oceanic mantle near the Bouvet triple junction [J]. Geochimica et Cosmochimica Acta, 1998, 62(5): 841-852. doi: 10.1016/S0016-7037(97)00383-9

    [31]

    Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24° E) [J]. Earth and Planetary Science Letters, 2003, 206(3-4): 509-528. doi: 10.1016/S0012-821X(02)01106-8

    [32]

    Gautheron C, Moreira M, Gerin C, et al. Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts [J]. Chemical Geology, 2015, 417: 163-172. doi: 10.1016/j.chemgeo.2015.10.005

    [33]

    Dick H J B, Natlan J H, Alt J C, et al. A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2000, 179(1): 31-51. doi: 10.1016/S0012-821X(00)00102-3

    [34]

    Zhao M H, Qiu X L, Li J B, et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39′E) [J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4544-4563. doi: 10.1002/ggge.20264

    [35]

    Natland J H, Dick H J B. Formation of the lower ocean crust and the crystallization of gabbroic cumulates At A very slowly spreading ridge [J]. Journal of Volcanology and Geothermal Research, 2001, 110(3-4): 191-233. doi: 10.1016/S0377-0273(01)00211-6

    [36]

    Robinson C J, Bickle M J, Minshull T A, et al. Low degree melting under the Southwest Indian Ridge: the roles of mantle temperature, conductive cooling and wet melting [J]. Earth and Planetary Science Letters, 2001, 188(3-4): 383-398. doi: 10.1016/S0012-821X(01)00329-6

    [37]

    Rioux M, Cheadle M J, John B E, et al. The temporal and spatial distribution of magmatism during lower crustal accretion at an ultraslow-spreading ridge: High-Precision U–Pb zircon dating of ODP Holes 735B and 1105A, Atlantis Bank, Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2016, 449: 395-406. doi: 10.1016/j.jpgl.2016.05.047

    [38]

    Bach W, Alt J C, Niu Y L, et al. The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176) [J]. Geochimica et Cosmochimica Acta, 2001, 65(19): 3267-3287. doi: 10.1016/S0016-7037(01)00677-9

    [39]

    Gao Y J, Hoefs J, Przybilla R, et al. A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B [J]. Chemical Geology, 2006, 233(3-4): 217-234. doi: 10.1016/j.chemgeo.2006.03.005

    [40]

    Holm P M. Sr, Nd and Pb isotopic composition of in situ lower crust at the Southwest Indian Ridge: results from ODP Leg 176 [J]. Chemical Geology, 2002, 184(3-4): 195-216. doi: 10.1016/S0009-2541(01)00364-3

    [41]

    靳野. 西南印度洋脊ODP 735B钻孔上部辉长岩研究[D]. 中国地质大学 (北京)博士学位论文, 2013

    JIN Ye. An approach to the Gabbros from the upper part of ODP 735B hole at the Southwest Indian ridge[D]. Doctor Dissertation of China University of Geosciences (Beijing), 2013.

    [42]

    Kempton P D, Hawkesworth C J, Fowler M. Geochemistry and isotopic composition of gabbros from Layer 3 of the Indian ocean crust, Leg 118, Hole 735B[M]//Von Herzen R P, Robinson P T. Proceedings of the Ocean Drilling Program, Scientific Results. College Station, TX: Ocean Drilling Program, 1991, 118: 127-143.

    [43]

    Warren J M. Global variations in abyssal peridotite compositions [J]. Lithos, 2016, 248-251: 193-219. doi: 10.1016/j.lithos.2015.12.023

    [44]

    Warren J M, Shimizu N, Sakaguchi C, et al. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions [J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B12): B12203. doi: 10.1029/2008JB006186

    [45]

    Seyler M, Brunelli D, Toplis M J, et al. Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E-68°E): Trace element compositions of along‐axis dredged peridotites [J]. Geochemistry, Geophysics, Geosystems, 2011, 12(9): Q0AC15.

    [46]

    Li W, Liu C Z, Tao C H, et al. Osmium isotope compositions and highly siderophile element abundances in abyssal peridotites from the Southwest Indian Ridge: Implications for evolution of the oceanic upper mantle [J]. Lithos, 2019, 346-347: 105167. doi: 10.1016/j.lithos.2019.105167

    [47]

    Snow J E, Hart S R, Dick H J B. Nd and Sr isotope evidence linking mid-ocean-ridge basalts and abyssal peridotites [J]. Nature, 1994, 371(6492): 57-60. doi: 10.1038/371057a0

    [48]

    Mallick S, Dick H J B, Sachi-Kocher A, et al. Isotope and trace element insights into heterogeneity of subridge mantle [J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2438-2453. doi: 10.1002/2014GC005314

    [49]

    Mallick S, Standish J J, Bizimis M. Constraints on the mantle mineralogy of an ultra-slow ridge: Hafnium isotopes in abyssal peridotites and basalts from The 9-25°E Southwest Indian Ridge [J]. Earth and Planetary Science Letters, 2015, 410: 42-53. doi: 10.1016/j.jpgl.2014.10.048

    [50]

    Salters V J M, Dick H J B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites [J]. Nature, 2002, 418(6893): 68-72. doi: 10.1038/nature00798

    [51]

    Cannat M, Sauter D, Bezos A, et al. Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(4): Q04002.

    [52]

    Georgen J E, Lin J, Dick H J B. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian ridge: effects of transform offsets [J]. Earth and Planetary Science Letters, 2001, 187(3-4): 283-300. doi: 10.1016/S0012-821X(01)00293-X

    [53]

    Tao C H, Lin J, Guo S Q, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge [J]. Geology, 2012, 40(1): 47-50. doi: 10.1130/G32389.1

    [54]

    Yue X H, Li H M, Ren J Y, et al. Seafloor hydrothermal activity along mid-ocean ridge with strong melt supply: study from segment 27, southwest Indian ridge [J]. Scientific Reports, 2019, 9(1): 9874. doi: 10.1038/s41598-019-46299-1

    [55]

    Tao C H, Seyfried W E Jr, Lowell R P, et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge [J]. Nature Communications, 2020, 11(1): 1300. doi: 10.1038/s41467-020-15062-w

    [56]

    Jian H C, Singh S C, Chen Y J, et al. Evidence of an axial magma chamber beneath the ultraslow-spreading Southwest Indian Ridge [J]. Geology, 2017, 45(2): 143-146. doi: 10.1130/G38356.1

    [57]

    Ito G, Lin J, Graham D. Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction [J]. Reviews of Geophysics, 2003, 41(4): 1017. doi: 10.1029/2002RG000117

    [58]

    Meyzen C M, Toplis M J, Humler E, et al. A discontinuity in mantle composition beneath the southwest Indian ridge [J]. Nature, 2003, 421(6924): 731-733. doi: 10.1038/nature01424

    [59]

    Maclennan J, Mckenzie D, Gronv ld K, et al. Crustal accretion under northern Iceland [J]. Earth and Planetary Science Letters, 2001, 191(3-4): 295-310. doi: 10.1016/S0012-821X(01)00420-4

    [60]

    Li W, Jin Z M, Li H M, et al. High water content in primitive mid-ocean ridge basalt from southwest Indian ridge (50.56°E): implications for recycled hydrous component in the mantle [J]. Journal of Earth Science, 2017, 28(3): 411-421. doi: 10.1007/s12583-017-0731-y

    [61]

    Li W, Soustelle V, Jin Z M, et al. Origins of water content variations in the suboceanic upper mantle: Insight from Southwest Indian Ridge abyssal peridotites [J]. Geochemistry, Geophysics, Geosystems, 2017, 18(3): 1298-1329. doi: 10.1002/2016GC006767

    [62]

    Smith D K, Tivey M A, Schouten H, et al. Locating the spreading axis along 80 km of the Mid-Atlantic Ridge south of the Atlantis Transform [J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B4): 7599-7612. doi: 10.1029/1998JB900064

    [63]

    Standish J J, Sims K W W. Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge [J]. Nature Geoscience, 2010, 3(4): 286-292. doi: 10.1038/ngeo824

    [64]

    Tucholke B E, Behn M D, Buck W R, et al. Role of melt supply in oceanic detachment faulting and formation of megamullions [J]. Geology, 2008, 36(6): 455-458. doi: 10.1130/G24639A.1

    [65]

    Anderson D L. Speculations on the nature and cause of mantle heterogeneity [J]. Tectonophysics, 2006, 416(1-4): 7-22. doi: 10.1016/j.tecto.2005.07.011

    [66]

    Mougel B, Agranier A, Hemond C, et al. A highly unradiogenic lead isotopic signature revealed by volcanic rocks from the East Pacific Rise [J]. Nature Communications, 2014, 5: 4474. doi: 10.1038/ncomms5474

    [67]

    Mougel B, Moreira M, Agranier A. A "high 4He/3He" mantle material detected under the East Pacific Rise (15°4′N) [J]. Geophysical Research Letters, 2015, 42(5): 1375-1383. doi: 10.1002/2014GL062921

    [68]

    Wanless V D, Shaw A M. Lower crustal crystallization and melt evolution at mid-ocean ridges [J]. Nature Geoscience, 2012, 5(9): 651-655. doi: 10.1038/ngeo1552

    [69]

    Li W, Tao C H, Zhang W, et al. Melt inclusions in plagioclase macrocrysts at mount Jourdanne, Southwest Indian ridge (~64° E): implications for an enriched mantle source and shallow magmatic processes [J]. Minerals, 2019, 9(8): 493. doi: 10.3390/min9080493

    [70]

    张涛, 林间, 高金耀. 90Ma以来热点与西南印度洋中脊的交互作用: 海台与板内海山的形成[J]. 中国科学:地球科学, 2011, 54(8):1177-1188 doi: 10.1007/s11430-011-4219-9

    ZHANG Tao, LIN Jian, GAO Jinyao. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts [J]. Science China Earth Sciences, 2011, 54(8): 1177-1188. doi: 10.1007/s11430-011-4219-9

    [71]

    Baker E T, German C R. On the global distribution of hydrothermal vent fields[C]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004, 148: 245-266.

    [72]

    Baker E T, Haymon R M, Resing J A, et al. High-resolution surveys along the hot spot-affected Galápagos Spreading Center: 1. Distribution of hydrothermal activity [J]. Geochemistry, Geophysics, Geosystems, 2008, 9(9): Q09003.

    [73]

    Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern mid-Atlantic ridge [J]. Earth and Planetary Science Letters, 2008, 275(1-2): 61-69. doi: 10.1016/j.jpgl.2008.08.010

  • 加载中

(5)

(2)

计量
  • 文章访问数:  2377
  • PDF下载数:  93
  • 施引文献:  0
出版历程
收稿日期:  2021-02-17
修回日期:  2021-06-14
刊出日期:  2021-10-28

目录