Geochemical compositions of the Onqin Daga Sand Land and Horqin Sand Land and their implications for weathering, sedimentation and provenance
-
摘要:
对浑善达克沙地与科尔沁沙地河流砂和风成砂的细颗粒组分(<10 μm和<63 μm)进行了地球化学元素(常量、微量和稀土元素)和Sr-Nd同位素分析,评估了浑善达克沙地与科尔沁沙地的化学风化、沉积再循环特征和物质源区,探讨了西拉沐沦河对两个沙地物质交换的贡献。浑善达克沙地与科尔沁沙地沉积物的地球化学分析(低的CIA值、PIA值和CIW值,高的WIP和ICV值,低的Zr/Sc比值以及A-CN-K和MFW图解等)表明这些沉积物处于化学风化初期阶段,成熟度低,仅经历了简单的沉积再循环过程。物源判别图解表明浑善达克沙地与科尔沁沙地的母岩以中酸性花岗岩石为主,并且具有一个混合源区,华北克拉通北部的燕山褶皱带和中亚造山带东部的大兴安岭山脉分别为它们提供了物质来源。此外,两个沙地的细颗粒物质(特别是<10 μm组分)在地球化学组成上具有很强的相似性,我们认为西拉沐沦河起到关键的桥梁作用,浑善达克沙地的细颗粒物质通过西拉沐沦河的搬运输送至科尔沁沙地,同时,地表盛行风的搬运也起到一定作用。
Abstract:Sand and fine sand fractions (<10 μm and<63 μm) collected from the Onqin Daga Sand Land and the Horqin Sandy Land are analyzed for geochemical elements including major elements, trace elements, rare earth elements and Sr-Nd isotopes, in order to evaluate the chemical weathering, sedimentary characteristics, source areas, and the contribution of the Xar Moron River to the mass exchange between the two sands. The sediments are characterized by such features as low CIA, PIA and CIW values, high WIP and ICV values, low Zr/Sc ratio, A-CN-K and MFW diagram suggesting that the sediments are in the early stage of chemical weathering and low in maturity, and only experienced a simple process of sedimentary recycling. The provenance discrimination diagram shows that the parent rocks of Onqin Daga Sand and Horqin Sandy Land are dominated by intermediate-acid granitic rocks and have a mixed source from the western part of the Great Hinggan Mountains and the northern part of the North China Craton. In addition, the fine components, especially the component<10 μm, are very similar in geochemical composition for the two sandy areas, and it is believed that fine grain matters may have been transported from the Onqin Daga Sand Land to the Horqin Sand Land taking the Xar Moron River as a bridge. At the same time, atmospheric dust transport under prevailing winds may also play a certain role in fine sediment transportation.
-
Key words:
- geochemistry /
- chemical weathering /
- sediment recycling /
- provenance /
- Onqin Daga Sand Land /
- Horqin Sandy Land
-
-
表 1 科尔沁沙地与浑善达克沙地的常量元素组成
Table 1. Concentrations of major elements for the Horqin Sand Land and the Onqin Daga Sandy Land
% 样品号 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 P2O5 T2(<63 μm) 72.44 11.53 2.84 0.984 2.57 2.77 2.74 0.811 0.09 T3(<63 μm) 64.26 11.23 2.73 1.56 5.99 2.34 2.61 0.694 0.106 T4(<63 μm) 74.15 11.14 1.89 0.679 2.53 2.73 2.99 0.844 0.06 T5(<63 μm) 71.4 11.33 2.13 0.83 2.98 2.73 2.89 0.602 0.086 T7(<63 μm) 73.89 11.78 2.11 0.573 1.29 2.67 3.08 0.656 0.063 T8(<63 μm) 75.18 11.7 1.95 0.526 1.27 2.81 3.06 0.71 0.055 T12(<63 μm) 74.86 11.71 1.98 0.561 1.3 2.84 3.03 0.596 0.058 T13(<63 μm) 73.07 11.82 2.37 0.65 1.32 2.64 3.06 0.796 0.074 T14(<63 μm) 71.05 11.76 2.62 0.766 2.33 2.52 2.74 0.921 0.066 T15(<63 μm) 73.74 11.87 2.49 0.691 1.4 2.67 2.84 0.823 0.042 T16(<63 μm) 74.06 11.46 2.09 0.592 1.85 2.76 3 0.796 0.047 HQ1(<63 μm) 73.65 11.34 2.04 0.711 2.43 2.58 2.96 0.791 0.056 HQ2(<63 μm) 76 11.6 1.96 0.567 1.35 2.81 3.08 0.673 0.042 HQ3(<63 μm) 71.15 11.44 4.36 1.01 2.47 2.71 2.52 2.6 0.124 HQ5(<63 μm) 73.07 11.09 3.67 0.817 2.35 2.72 2.66 1.66 0.087 HQ6(<63 μm) 74.83 11.49 2.54 0.719 1.54 2.73 2.95 0.913 0.066 HQ7(<63 μm) 74.58 12.06 2.41 0.738 1.42 2.82 2.9 0.701 0.053 HQ8(<63 μm) 74.53 11.19 2.75 0.789 2.02 2.71 2.68 0.965 0.081 HQ9(<63 μm) 74.35 11.3 3.05 0.724 1.76 2.7 2.71 1.28 0.077 HQ10(<63 μm) 75.45 11.33 2.42 0.672 1.58 2.84 2.87 0.968 0.064 HQ12(<63 μm) 75.51 11.56 2.04 0.622 1.38 2.84 3.03 0.635 0.056 HQ13(<63 μm) 75.1 11.66 2.28 0.715 1.44 2.79 2.88 0.701 0.066 HQ14(<63 μm) 75.76 11.56 2.01 0.613 1.35 2.81 3.02 0.646 0.058 HQ15(<63 μm) 75.44 11.77 2.1 0.642 1.34 2.81 3.02 0.65 0.06 HQ16(<63 μm) 76.53 11.45 1.83 0.487 1.27 2.81 3.19 0.623 0.043 HQ17(<63 μm) 75.28 11.73 2.08 0.611 1.34 2.76 2.98 0.611 0.057 HQ18(<63 μm) 75.03 11.68 2.11 0.63 1.38 2.82 2.9 0.626 0.061 HQ19(<63 μm) 74.01 11.81 2.3 0.811 2.04 2.68 2.8 0.892 0.056 HQ20(<63 μm) 69.92 12.02 3.02 1.07 3.49 2.46 2.77 0.744 0.068 HQ21(<63 μm) 75.42 11.27 2.42 0.609 1.87 2.86 2.81 1.48 0.053 HQ22(<63 μm) 77.15 11.37 1.61 0.434 1.23 2.83 3.24 0.614 0.042 HQ23(<63 μm) 75.7 11.45 2.03 0.56 1.33 2.8 2.95 0.68 0.053 HQ1(<10 μm) 69.33 11.7 3.22 1.03 3.4 2.51 2.59 1.42 0.092 HQ2(<10 μm) 73.69 11.99 2.85 0.791 1.7 2.84 2.78 1.03 0.067 HQ3(<10 μm) 69.03 12.29 4.71 1.21 2.56 2.94 2.52 2.43 0.173 HQ5(<10 μm) 67.93 10.86 6.88 1.1 3.01 2.53 2.22 3.01 0.166 HQ7(<10 μm) 73.43 12.15 3.14 0.833 1.56 2.81 2.66 0.828 0.069 HQ8(<10 μm) 71.87 11.27 4.11 0.981 2.42 2.62 2.4 1.47 0.119 HQ9(<10 μm) 71.86 11.34 4.33 0.94 2.12 2.6 2.44 1.83 0.117 HQ10(<10 μm) 73.83 11.47 3.28 0.837 1.82 2.75 2.58 1.21 0.095 HQ12(<10 μm) 73.8 11.72 2.79 0.814 1.65 2.77 2.67 0.931 0.076 HQ13(<10 μm) 73.13 11.72 3.19 0.888 1.77 2.7 2.57 1.11 0.095 HQ15(<10 μm) 73.22 11.87 3.24 0.855 1.66 2.75 2.65 1.06 0.084 HQ16(<10 μm) 74.17 11.51 2.92 0.69 1.72 2.78 2.7 1.24 0.067 HQ17(<10 μm) 73.54 11.83 2.85 0.775 1.6 2.8 2.67 0.91 0.074 HQ18(<10 μm) 73.47 11.8 2.71 0.762 1.6 2.79 2.59 0.89 0.079 HQ19(<10 μm) 70.94 11.94 3.35 1.06 2.74 2.57 2.49 1.41 0.096 HQ20(<10 μm) 67.79 12.02 3.59 1.24 4 2.36 2.53 0.908 0.091 HQ21(<10 μm) 73.61 11.47 3.15 0.787 2.11 2.89 2.53 1.8 0.087 HQ22(<10 μm) 74.88 11.41 2.7 0.654 1.68 2.81 2.79 1.2 0.064 OD1(<63 μm) 74 11.45 3.13 0.764 1.93 2.88 2.85 1.27 0.084 OD2(<63 μm) 75 11.46 2.71 0.6 1.6 2.85 2.85 1.18 0.059 OD3(<63 μm) 73.98 11.62 3.37 0.731 1.77 2.81 2.81 1.45 0.07 OD4(<63 μm) 74.85 11.45 2.81 0.689 1.6 2.87 2.88 1.17 0.082 OD6(<63 μm) 66.42 12.15 3.51 1.46 4.71 2.31 2.67 0.716 0.121 OD8(<63 μm) 71.68 11.63 3.83 0.966 2.51 2.81 2.72 1.74 0.098 OD9(<63 μm) 74.4 11.86 2.94 0.776 1.54 2.87 2.9 0.882 0.08 OD10(<63 μm) 73.39 12.1 3.09 0.694 1.72 3.04 2.76 1.31 0.085 OD11(<63 μm) 73.02 11.9 3.11 0.843 1.53 2.66 2.76 1.05 0.095 OD12(<63 μm) 75.13 11.65 2.55 0.691 1.22 2.73 2.58 0.699 0.067 OD13(<63 μm) 69.07 11.33 5.38 0.963 2.34 2.54 2.56 3.14 0.088 OD14(<63 μm) 70.13 11.58 3.52 1 1.68 2.67 2.34 0.983 0.108 OD15(<63 μm) 68.61 11.13 6.43 1.11 2.71 2.48 2.45 2.15 0.129 OD16(<63 μm) 71.21 11.9 4 1.14 1.58 2.53 2.44 0.984 0.128 OD17(<63 μm) 68.73 11.46 5.3 1.2 2.7 2.4 2.37 1.4 0.121 OD18(<63 μm) 52.61 8.91 4.26 1.35 14.38 1.91 1.81 1.12 0.104 OD19(<63 μm) 69.05 10.53 2.72 1.86 4.28 2.27 2.47 0.709 0.079 OD20(<63 μm) 64.36 10.62 4.93 1.21 6.24 2.39 2.33 1.39 0.099 OD1(<10 μm) 71.61 11.65 4.18 0.987 2.22 2.71 2.56 1.46 0.135 OD2(<10 μm) 72.93 11.63 3.71 0.765 1.72 2.81 2.57 1.37 0.086 OD3(<10 μm) 71.55 11.93 4.56 0.95 1.94 2.75 2.54 1.63 0.11 OD4(<10 μm) 72.99 11.89 3.53 0.934 1.65 2.79 2.67 1.18 0.13 OD6(<10 μm) 62.62 12.23 4.13 1.78 5.7 2.03 2.43 0.797 0.155 OD8(<10 μm) 69.18 11.8 4.57 1.22 3.03 2.65 2.46 1.49 0.144 OD9(<10 μm) 73.24 12.01 3.13 0.959 1.62 2.75 2.66 0.956 0.109 OD12(<10 μm) 74.66 11.55 2.75 0.761 1.19 2.64 2.33 0.726 0.072 OD15(<10 μm) 70.65 12.01 4.19 1.28 2.25 2.47 2.46 0.963 0.142 OD16(<10 μm) 71.73 12.11 3.46 1.21 1.51 2.55 2.34 0.727 0.135 OD17(<10 μm) 68.15 12.02 4.64 1.36 2.75 2.35 2.33 1.02 0.134 OD18(<10 μm) 41.92 7.54 2.65 1.4 22.48 1.53 1.44 0.522 0.093 OD19(<10 μm) 65.54 10.63 3.17 2.24 5.4 2.16 2.24 0.743 0.102 OD20(<10 μm) 55.66 9.87 3.44 1.39 12.22 2.03 1.97 0.778 0.1 UCC 66 15.2 5 2.2 4.2 3.9 3.4 0.5 0.5 注:Fe2O3代表总铁含量,UCC为上陆壳。 表 2 科尔沁沙地与浑善达克沙地CIA、CIW、PIA、WIP值
Table 2. CIA,CIW,PIA,WIP values of the Horqin Daga Sand Land and the Onqin Sandy Land
样品名 CIA CIW PIA WIP 样品名 CIA CIW PIA WIP T2(<63 μm) 49.01 56.10 48.67 57.84 HQ3(<10 μm) 50.97 57.50 51.26 57.86 T3(<63 μm) 51.60 59.33 52.17 53.50 HQ5(<10 μm) 50.29 56.61 50.38 51.10 T4(<63 μm) 47.73 55.43 46.85 58.75 HQ7(<10 μm) 54.40 62.47 55.93 54.60 T5(<63 μm) 48.32 55.78 47.70 58.35 HQ8(<10 μm) 50.52 57.20 50.68 53.07 T7(<63 μm) 54.25 64.12 56.14 55.49 HQ9(<10 μm) 51.91 59.07 52.52 52.36 T8(<63 μm) 53.61 63.23 55.19 56.46 HQ10(<10 μm) 52.42 60.11 53.25 53.95 T12(<63 μm) 53.47 62.92 54.96 56.64 HQ12(<10 μm) 53.28 61.36 54.45 54.47 T13(<63 μm) 54.44 64.27 56.40 55.30 HQ13(<10 μm) 53.40 61.17 54.56 53.42 T14(<63 μm) 51.21 58.82 51.63 54.40 HQ15(<10 μm) 53.73 61.77 55.04 54.23 T15(<63 μm) 54.47 63.44 56.23 54.13 HQ16(<10 μm) 52.35 60.40 53.21 54.68 T16(<63 μm) 50.90 59.51 51.27 57.18 HQ17(<10 μm) 53.60 61.70 54.88 54.52 HQ1(<63 μm) 49.22 57.19 48.91 56.89 HQ18(<10 μm) 53.82 61.73 55.13 53.69 HQ2(<63 μm) 52.91 62.43 54.19 56.99 HQ19(<10 μm) 51.69 58.54 52.21 53.74 HQ3(<63 μm) 50.10 56.91 50.13 55.11 HQ20(<10 μm) 53.35 60.75 54.43 52.17 HQ5(<63 μm) 49.24 56.48 48.98 55.68 HQ21(<10 μm) 50.74 57.76 50.98 55.44 HQ6(<63 μm) 52.64 61.68 53.73 55.97 HQ22(<10 μm) 51.94 60.24 52.68 55.53 HQ7(<63 μm) 54.07 62.95 55.67 56.17 OD1(<63 μm) 50.68 58.71 50.93 57.56 HQ8(<63 μm) 50.77 58.48 51.04 54.86 OD2(<63 μm) 52.06 60.57 52.86 56.07 HQ9(<63 μm) 52.06 60.22 52.83 54.19 OD3(<63 μm) 51.99 60.21 52.74 56.12 HQ10(<63 μm) 51.87 60.50 52.62 56.28 OD4(<63 μm) 52.01 60.62 52.81 56.68 HQ12(<63 μm) 52.79 62.11 53.98 57.02 OD6(<63 μm) 53.65 61.52 54.90 53.39 HQ13(<63 μm) 53.39 62.30 54.75 55.66 OD8(<63 μm) 49.40 56.48 49.20 57.81 HQ14(<63 μm) 53.08 62.48 54.40 56.55 OD9(<63 μm) 53.08 61.79 54.29 56.95 HQ15(<63 μm) 53.58 62.98 55.10 56.60 OD10(<63 μm) 52.55 60.41 53.45 57.54 HQ16(<63 μm) 52.66 62.63 53.90 57.50 OD11(<63 μm) 54.51 63.18 56.22 53.93 HQ17(<63 μm) 53.79 63.15 55.38 55.72 OD12(<63 μm) 55.47 64.00 57.46 51.93 HQ18(<63 μm) 53.50 62.50 54.91 55.74 OD13(<63 μm) 50.72 57.92 50.96 53.55 HQ19(<63 μm) 51.71 59.64 52.33 55.80 OD14(<63 μm) 54.33 61.68 55.69 51.22 HQ20(<63 μm) 51.99 59.76 52.69 54.89 OD15(<63 μm) 50.71 57.70 50.94 52.51 HQ21(<63 μm) 50.53 58.53 50.73 56.56 OD16(<63 μm) 55.92 63.86 57.88 50.85 HQ22(<63 μm) 52.44 62.59 53.61 57.86 OD17(<63 μm) 52.26 59.20 52.95 51.15 HQ23(<63 μm) 53.12 62.39 54.44 55.68 OD18(<63 μm) 51.93 58.64 52.50 41.16 HQ1(<10 μm) 51.39 58.62 51.84 53.82 OD19(<63 μm) 50.92 58.50 51.24 52.34 HQ2(<10 μm) 53.02 61.18 54.12 56.14 OD20(<63 μm) 50.54 57.46 50.71 50.73 OD1(<10 μm) 51.53 58.75 52.03 54.72 OD12(<10 μm) 56.57 64.57 58.73 49.07 OD2(<10 μm) 52.94 60.64 53.94 54.00 OD15(<10 μm) 53.38 60.56 54.43 52.52 OD3(<10 μm) 53.07 60.48 54.06 54.18 OD16(<10 μm) 56.93 64.65 59.10 50.18 OD4(<10 μm) 53.87 62.01 55.25 54.81 OD17(<10 μm) 53.95 60.85 55.11 50.68 OD6(<10 μm) 56.76 64.68 58.95 49.01 OD18(<10 μm) 53.34 59.96 54.28 33.77 OD8(<10 μm) 50.89 57.51 51.15 54.86 OD19(<10 μm) 52.71 59.93 53.57 50.17 OD9(<10 μm) 54.32 62.47 55.84 54.41 OD20(<10 μm) 52.82 59.64 53.65 44.01 -
[1] Che X D, Li G J. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon [J]. Quaternary Research, 2013, 80(3): 545-551. doi: 10.1016/j.yqres.2013.05.007
[2] Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(11): 2085-2099. doi: 10.1002/2016JF003936
[3] Sun J M. Source regions and formation of the loess sediments on the high mountain regions of northwestern China [J]. Quaternary Research, 2002, 58(3): 341-351. doi: 10.1006/qres.2002.2381
[4] Shi Z G, Liu X D. Distinguishing the provenance of fine-grained eolian dust over the Chinese Loess Plateau from a modelling perspective [J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(5): 959-970. doi: 10.1111/j.1600-0889.2011.00561.x
[5] Chen Z, Li G J. Evolving sources of eolian detritus on the Chinese Loess Plateau since early Miocene: tectonic and climatic controls [J]. Earth and Planetary Science Letters, 2013, 371-372: 220-225. doi: 10.1016/j.jpgl.2013.03.044
[6] Nie J S, Peng W B, Möller A, et al. Provenance of the upper Miocene-Pliocene red clay deposits of the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 2014, 407: 35-47. doi: 10.1016/j.jpgl.2014.09.026
[7] Nie J S, Peng W B. Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau [J]. Aeolian Research, 2014, 13: 71-75. doi: 10.1016/j.aeolia.2014.03.005
[8] 陈骏, 李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学: 地球科学, 2011, 54(9):1279-1301 doi: 10.1007/s11430-011-4269-z
CHEN Jun, LI Gaojun. Geochemical studies on the source region of Asian dust [J]. Science China Earth Sciences, 2011, 54(9): 1279-1301. doi: 10.1007/s11430-011-4269-z
[9] 陈骏, 安芷生, 刘连文, 等. 最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑), 2001, 44(5):403-413 doi: 10.1007/BF02909779
CHEN Jun, AN Zhisheng, LIU Lianwen, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland [J]. Science in China Series D: Earth Sciences, 2001, 44(5): 403-413. doi: 10.1007/BF02909779
[10] 杨杰东, 陈骏, 饶文波, 等. 中国沙漠的同位素分区特征[J]. 地球化学, 2007, 36(5):516-524 doi: 10.3321/j.issn:0379-1726.2007.05.010
YANG Jiedong, CHEN Jun, RAO Wenbo, et al. Isotopic partition characteristics of Chinese deserts [J]. Geochimica, 2007, 36(5): 516-524. doi: 10.3321/j.issn:0379-1726.2007.05.010
[11] 谢静, 吴福元, 丁仲礼. 浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J]. 岩石学报, 2007, 23(2):523-528 doi: 10.3969/j.issn.1000-0569.2007.02.028
XIE Jing, WU Fuyuan, DING Zhongli. Detrital zircon composition of U-Pb ages and Hf isotope of the Hunshandake sandland and implications for its provenance [J]. Acta Petrologica Sinica, 2007, 23(2): 523-528. doi: 10.3969/j.issn.1000-0569.2007.02.028
[12] 朱迎新. 章古台沙地樟子松人工林固沙效果探究[J]. 理论界, 2014(5):62-64 doi: 10.3969/j.issn.1003-6547.2014.05.017
ZHU Yingxin. Study on the effect of pinus sylva plantation on sand fixation in Zhanggu sandy land [J]. Theory Horizon, 2014(5): 62-64. doi: 10.3969/j.issn.1003-6547.2014.05.017
[13] 杨艳, 程捷, 田明中, 等. 近50年来哈尔滨市沙尘暴发生规律及气象特征研究[J]. 干旱区资源与环境, 2012, 26(11):54-60
YANG Yan, CHENG Jie, TIAN Mingzhong, et al. The spatial and temporal distribution of dust-storm and its meteorological in Harbin [J]. Journal of Arid Land Resources and Environment, 2012, 26(11): 54-60.
[14] 谢远云, 孙磊, 康春国, 等. 松嫩沙地Sr-Nd同位素组成特征[J]. 沉积学报, 2020, 38(4):771-780
XIE Yuanyun, SUN Lei, KANG Chunguo, et al. Sr-Nd isotopic partition characteristics of the Songnen sandy land [J]. Acta Sedimentologica Sinica, 2020, 38(4): 771-780.
[15] Xie Y Y, Kang C G, Chi Y P, et al. The loess deposits in Northeast China: the linkage of loess accumulation and geomorphic-climatic features at the easternmost edge of the Eurasian loess belt [J]. Journal of Asian Earth Sciences, 2019, 181: 103914. doi: 10.1016/j.jseaes.2019.103914
[16] Xie Y Y, Liu L, Kang C G, et al. Sr-Nd isotopic characteristics of the Northeast Sandy Land, China and their implications for tracing sources of regional dust [J]. Catena, 2020, 184: 104303. doi: 10.1016/j.catena.2019.104303
[17] 张晓娟, 季宏兵, 冯晓静, 等. 岩溶盆地红土风化剖面的元素地球化学研究[J]. 地理科学, 2017, 37(6):944-951
ZHANG Xiaojuan, JI Hongbing, FENG Xiaojing, et al. Element geochemistry characteristic of the red soil weathering profiles in the Karst Basin [J]. Scientia Geographica Sinica, 2017, 37(6): 944-951.
[18] Mclennan S M. Weathering and global denudation [J]. The Journal of Geology, 1993, 101(2): 295-303. doi: 10.1086/648222
[19] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites [J]. Nature, 1982, 299(5885): 715-717. doi: 10.1038/299715a0
[20] Harnois L. The CIW index: A new chemical index of weathering [J]. Sedimentary Geology, 1988, 55(3-4): 319-322. doi: 10.1016/0037-0738(88)90137-6
[21] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance [J]. Geology, 1995, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[22] Parker A. An index of weathering for silicate rocks [J]. Geological Magazine, 1970, 107(6): 501-504. doi: 10.1017/S0016756800058581
[23] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations [J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534. doi: 10.1016/0016-7037(84)90408-3
[24] Cullers R L, Podkovyrov V N. Geochemistry of the mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling [J]. Precambrian Research, 2000, 104(1-2): 77-93. doi: 10.1016/S0301-9268(00)00090-5
[25] Garzanti E, Padoan M, Andò S, et al. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift [J]. The Journal of Geology, 2013, 121(6): 547-580. doi: 10.1086/673259
[26] Ohta T, Arai H. Statistical empirical index of chemical weathering in igneous rocks: a new tool for evaluating the degree of weathering [J]. Chemical Geology, 2007, 240(3-4): 280-297. doi: 10.1016/j.chemgeo.2007.02.017
[27] Condie K C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales [J]. Chemical Geology, 1993, 104(1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E
[28] Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific, 1985.
[29] Yang H, Ge W C, Yu Q, et al. Zircon U-Pb-Hf isotopes, bulk-rock geochemistry and petrogenesis of Middle to Late Triassic I-type granitoids in the Xing’an Block, northeast China: Implications for early Mesozoic tectonic evolution of the central Great Xing’an Range [J]. Journal of Asian Earth Sciences, 2016, 119: 30-48. doi: 10.1016/j.jseaes.2016.01.012
[30] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical approaches to sedimentation, provenance, and tectonics[M]//Johnsson M J. Processes Controlling the Composition of Clastic Sediments. Boulder: Geological Society of America, 1993, 284: 21-40.
[31] Cullers R L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies [J]. Lithos, 2000, 51(3): 181-203. doi: 10.1016/S0024-4937(99)00063-8
[32] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins [J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193. doi: 10.1007/BF00375292
[33] Li G J, Pettke T, Chen J. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene [J]. Geology, 2011, 39(3): 199-202. doi: 10.1130/G31734.1
[34] Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. doi: 10.1016/j.gca.2007.04.033
[35] Li G J, Chen J, Ji J F, et al. Natural and anthropogenic sources of East Asian dust [J]. Geology, 2009, 37(8): 727-730. doi: 10.1130/G30031A.1
[36] 李小妹, 严平, 钱瑶, 等. 西拉木伦河流域地表沉积物粒度、化学元素分布特征[J]. 干旱区研究, 2017, 34(1):191-199
LI Xiaomei, YAN Ping, QIAN Yao, et al. Spatial distribution of grain size and chemical elements in surface sediments in the Xar Moron River Basin [J]. Arid Zone Research, 2017, 34(1): 191-199.
[37] Condie K C. Another look at rare earth elements in shales [J]. Geochimica et Cosmochimica Acta, 1991, 55(9): 2527-2531. doi: 10.1016/0016-7037(91)90370-K
[38] Xie Y Y, Chi Y P, Meng J, et al. Grain-size and Sr-Nd isotopic compositions of dry- and wet-deposited dusts during the same dust-storm event in Harbin, China: implications for source, transport-deposition modes, dynamic mechanism and formation of eolian loess [J]. Environmental Earth Sciences, 2015, 74(8): 6489-6502. doi: 10.1007/s12665-015-4747-2
[39] Grousset F E, Biscaye P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes [J]. Chemical Geology, 2005, 222(3-4): 149-167. doi: 10.1016/j.chemgeo.2005.05.006
[40] Rao W B, Chen J, Yang J D, et al. Sr-Nd isotopic characteristics of eolian deposits in the Erdos Desert and Chinese Loess Plateau: implications for their provenances [J]. Geochemical Journal, 2008, 42(3): 273-282. doi: 10.2343/geochemj.42.273
[41] 曹建华, 刘志辉, 李俊有. 克什克腾旗“三河源”生态保护区人工增雨工程建设的必要性[J]. 内蒙古科技与经济, 2016(14):69-70 doi: 10.3969/j.issn.1007-6921.2016.14.036
CAO Jianhua, LIU Zhihui, LI Junyou. A study on artificial precipitation in the Hexigtenqi ecological protection zone [J]. Inner Mongolia Science Technology & Economy, 2016(14): 69-70. doi: 10.3969/j.issn.1007-6921.2016.14.036
[42] 张瀚之, 鹿化煜, 弋双文, 等. 中国北方沙漠/沙地锆石形态特征及其对物源的指示[J]. 第四纪研究, 2013, 33(2):334-344 doi: 10.3969/j.issn.1001-7410.2013.02.15
ZHANG Hanzhi, LU Huayu, YI Shuangwen, et al. Zircon typological analyses of the major deserts/sand fields in northern China and its implication for identifying sediment source [J]. Quaternary Sciences, 2013, 33(2): 334-344. doi: 10.3969/j.issn.1001-7410.2013.02.15
[43] Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications [J]. Catena, 2004, 55(3): 325-340. doi: 10.1016/S0341-8162(03)00109-7
[44] 谢远云, 孟杰, 郭令芬, 等. 哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析[J]. 地球科学—中国地质大学学报, 2013, 38(5):923-933 doi: 10.3799/dqkx.2013.091
XIE Yuanyun, MENG Jie, GUO Lingfen, et al. REE geochemistry for sand-dust fallouts in Harbin, Heilongjiang province and provenance analysis [J]. Earth Science—Journal of China University of Geosciences, 2013, 38(5): 923-933. doi: 10.3799/dqkx.2013.091
-