龙口湾水动力特征及其对人工岛群建设的响应

费成鹏, 胡日军, 雒敏义, 姜胜辉, 张晓东, 朱龙海, 刘波. 龙口湾水动力特征及其对人工岛群建设的响应[J]. 海洋地质与第四纪地质, 2022, 42(1): 81-95. doi: 10.16562/j.cnki.0256-1492.2021021301
引用本文: 费成鹏, 胡日军, 雒敏义, 姜胜辉, 张晓东, 朱龙海, 刘波. 龙口湾水动力特征及其对人工岛群建设的响应[J]. 海洋地质与第四纪地质, 2022, 42(1): 81-95. doi: 10.16562/j.cnki.0256-1492.2021021301
FEI Chengpeng, HU Rijun, LUO Minyi, JIANG Shenghui, ZHANG Xiaodong, ZHU Longhai, LIU Bo. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 81-95. doi: 10.16562/j.cnki.0256-1492.2021021301
Citation: FEI Chengpeng, HU Rijun, LUO Minyi, JIANG Shenghui, ZHANG Xiaodong, ZHU Longhai, LIU Bo. Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 81-95. doi: 10.16562/j.cnki.0256-1492.2021021301

龙口湾水动力特征及其对人工岛群建设的响应

  • 基金项目: 中国华能集团有限公司科技项目“霞浦核电海岛厂址开发利用研究”(HNKJ20-H18);山东省自然科学基金资助项目“近50年来山东半岛滨海沙滩侵蚀演变的定量评价及其影响因素”(ZR2019MD037);国家自然科学基金项目“山东半岛海湾对泥沙的捕获机制——以威海湾为例”(41776059)
详细信息
    作者简介: 费成鹏(1995—),男,硕士研究生,地质工程专业,E-mail:fcpgth@163.com
    通讯作者: 胡日军(1980—),男,副教授,主要从事海洋沉积动力研究,E-mail:hrj@ouc.edu.cn
  • 中图分类号: P736

Hydrodynamic characteristics of Longkou Bay and its response to artificial island groups

More Information
  • 基于龙口湾及附近海域的水文实测资料,利用Mike21数学模型模拟了人工岛建设前后的潮流、波浪、纳潮量及水交换率等水动力特征,探讨了人工岛群建设对龙口湾水动力环境的影响。结果表明,人工岛建设显著改变了龙口湾潮流场特征及水体运动路径,湾内受到人工岛的阻挡,流速普遍减小,局部区域潮流运动形式由往复流变为旋转流,流向变化较大,余流形成多个涡旋;湾外由于堤头挑流作用导致局部区域流速增大且余流流速增大,潮流运动形式未发生明显改变。受人工岛的掩蔽作用,人工岛及附近区域的波浪有效波高普遍减小。龙口湾潮位出现北部最大潮差变小、南部最大潮差增大的格局,壅水作用导致人工岛内部水道潮差变化明显。人工岛建设直接占据了龙口湾海域面积,导致其纳潮量明显减小,水交换率呈现南部和北部增大、人工岛北侧以及内部水道减小的特征,人工岛造成的水动力环境的改变是影响水交换率变化的主要原因。人工岛群建设导致龙口湾内的潮流、波浪、纳潮量以及水交换等水动力特征减弱,是引起龙口湾水动力条件变化的根本因素。

  • 加载中
  • 图 1  研究区地理位置

    Figure 1. 

    图 2  研究区计算网格图

    Figure 2. 

    图 3  潮位验证曲线

    Figure 3. 

    图 4  流速流向验证曲线

    Figure 4. 

    图 5  人工岛建设前涨急和落急时刻潮流场分布图(大潮期)

    Figure 5. 

    图 6  人工岛建设后涨急和落急时刻潮流场分布图(大潮期)

    Figure 6. 

    图 7  SW向6级风下人工岛建设前后波浪场分布图

    Figure 7. 

    图 8  N向6级风下人工岛建设前后波浪场分布图

    Figure 8. 

    图 9  人工岛建设前后30 d水交换率分布图

    Figure 9. 

    图 10  人工岛建设前后涨急时刻流向对比图(大潮期)

    Figure 10. 

    图 11  人工岛建设前后落急时刻流向对比图(大潮期)

    Figure 11. 

    图 12  人工岛建设前后涨急和落急时刻流速对比图(大潮期)

    Figure 12. 

    图 13  人工岛建设前后余流特征

    Figure 13. 

    图 14  人工岛建设前后余流流速对比图

    Figure 14. 

    图 15  人工岛建设前后波浪场对比图

    Figure 15. 

    图 16  人工岛建设前后30 d水交换率对比图

    Figure 16. 

    表 1  人工岛建设前后纳潮量

    Table 1.  Tidal prism before and after construction of artificial island

    潮况建设前纳潮量/m3建设后纳潮量/m3变化量/m3变化率/%
    大潮1.3620×1081.1749×108−1.8710×107−13.74
    小潮9.1227×1077.8660×107−1.2567×107−13.78
    平均1.1371×1089.8075×107−1.5635×107−13.75
    下载: 导出CSV

    表 2  人工岛建设前后代表点潮位变化

    Table 2.  Tide changes before and after construction of artificial island (spring tide)

    位置站号工程前最大潮差/m工程后最大潮差/m最大潮差变化/m
    人工岛北11.0801.063−0.017
    21.0761.063−0.013
    人工岛西31.0951.087−0.008
    41.1001.094−0.006
    51.1091.104−0.005
    人工岛南61.1071.1210.014
    71.1181.1260.008
    81.1381.1390.001
    人工岛内91.0851.066−0.019
    101.0921.1390.046
    111.0911.070−0.021
    121.0971.1440.047
    下载: 导出CSV

    表 3  不同海湾纳潮量变化对比

    Table 3.  Variation of tide prism in different bays

    区域海域面积
    变化率/%
    大潮期
    变化率/%
    小潮期
    变化率/%
    平均
    变化率/%
    计算区域−20.68−13.74−13.78−13.75
    莱州湾[62]−7.38−6.05−4.90−5.57
    锦州湾[63]−22.87−29.76−29.72−29.74
    芝罘湾[64]−19.69−19.66−19.86−19.75
    罗源湾[65]−31.74−22.94−21.13−28.38
    湛江湾[66]−3.2−3.4
    象山港[67]−7.5−8.9−8.0−8.6
    下载: 导出CSV

    表 4  不同海湾水交换率变化对比

    Table 4.  Variation of water exchange rate in different bays

    区域交换时间/d海域面积变化/%平均水交换率变化/%
    本文计算区域30−20.68−2.76
    锦州湾[63]−10.61(2000—2005)−17.51
    −22.87(2005—2010)−9.28
    湛江湾[66]7−1.22(2007—2012)−17.45
    7−1.93(2012—2015)−4.83
    象山港[67]30−7.50−3.20
    罗源湾[68]30−31.74−21.42
    下载: 导出CSV
  • [1]

    史经昊, 李广雪, 周春艳. 海湾沉积环境对人类活动的响应[J]. 海洋地质与第四纪地质, 2010, 30(4):11-18

    SHI Jinghao, LI Guangxue, ZHOU Chunyan. Preliminary study on human influence on sedimentary environment of a bay [J]. Marine Geology & Quaternary Geology, 2010, 30(4): 11-18.

    [2]

    张盼. 莱州湾西南部现代沉积环境研究[D]. 中国海洋大学硕士学位论文, 2014.

    ZHANG Pan. A study on modern sedimentary environment in Southwestern Laizhou Bay[D]. Master Dissertation of Ocean University of China, 2014.

    [3]

    Barnes B B, Hu C M. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data [J]. Scientific Reports, 2016, 6(1): 33194. doi: 10.1038/srep33194

    [4]

    林元军, 吴家鸣. 人工岛工程建设对海洋环境影响的数值分析方法探讨[J]. 广东造船, 2008(4):35-37 doi: 10.3969/j.issn.2095-6622.2008.04.014

    LIN Yuanjun, WU Jiaming. Numerical methods for analyzing influence of artificial island project on marine environment [J]. Guangdong Shipbuilding, 2008(4): 35-37. doi: 10.3969/j.issn.2095-6622.2008.04.014

    [5]

    Kassas M. Coastal processes with engineering applications [J]. The Environmentalist, 2004, 24(1): 60-61. doi: 10.1023/B:ENVR.0000046451.85342.a9

    [6]

    Neumann B, Vafeidis A T, Zimmermann J, et al. Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment [J]. PLoS One, 2015, 10(3): e0131375.

    [7]

    Jiang S H, Hu R J, Feng X L, et al. Influence of the construction of the Yantai West Port on the dynamic sedimentary environment [J]. Marine Georesources & Geotechnology, 2018, 36(1): 43-51.

    [8]

    Hu S L, Kot S C. Numerical model of tides in pearl river estuary with moving boundary [J]. Journal of Hydraulic Engineering, 1997, 123(1): 21-29. doi: 10.1061/(ASCE)0733-9429(1997)123:1(21)

    [9]

    Byun D S, Wang X H, Holloway P E. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea [J]. Estuarine, Coastal and Shelf Science, 2004, 59(2): 185-196. doi: 10.1016/j.ecss.2003.08.007

    [10]

    丁若雪, 顾介康. 基于MIKE21的瓯江口水动力特征与水流数值模拟研究[J]. 中国水运, 2017, 17(9):200-203

    DING Ruoxue, GU Jiekang. Hydrodynamic characteristics and flow numerical simulation of Oujiang Estuary based on MIKE21 [J]. China Water Transport, 2017, 17(9): 200-203.

    [11]

    李雨. 潮流数值模拟在斯里兰卡汉班托塔港人工岛设计中的研究应用[J]. 中国水运, 2018, 18(5):70-72, 94

    LI Yu. Research and application of tidal flow numerical simulation in artificial island design of Hambantota port, Sri Lanka [J]. China Water Transport, 2018, 18(5): 70-72, 94.

    [12]

    谭晓煜, 高佳. 三亚新机场人工岛工程前后潮流变化模拟研究[J]. 海洋通报, 2019, 21(2):1-15

    TAN Xiaoyu, GAO Jia. Impact of the Sanya new airport artificial islands project on tidal dynamics of the Hongtang Bay [J]. Marine Science Bulletin, 2019, 21(2): 1-15.

    [13]

    Rtimi R, Sottolichio A, Tassi P. Hydrodynamics of a hyper-tidal estuary influenced by the world's second largest tidal power station (Rance estuary, France) [J]. Estuarine, Coastal and Shelf Science, 2021, 250: 107143. doi: 10.1016/j.ecss.2020.107143

    [14]

    Cornett A, Cousineau J, Nistor I. Assessment of hydrodynamic impacts from tidal power lagoons in the Bay of Fundy [J]. International Journal of Marine Energy, 2013, 1: 33-54. doi: 10.1016/j.ijome.2013.05.006

    [15]

    Hoefel F, Elgar S. Wave-induced sediment transport and sandbar migration [J]. Science, 2003, 299(5614): 1885-1887. doi: 10.1126/science.1081448

    [16]

    Torres-Freyermuth A, Medellín G, Salles P. Human impact on the spatiotemporal evolution of beach resilience on the Northwestern Yucatan Coast [J]. Frontiers in Marine Science, 2021, 8: 111.

    [17]

    Hendriyono W, Wibowo M, Subarkah A, et al. Wave model for the design of sustainable coastal infrastructures at an industrial site in Tuban, East Java [J]. Journal of Physics: Conference Series, 2020, 1625(1): 012049.

    [18]

    Gou H, Luo F, Li R J, et al. Modeling study on the hydrodynamic environmental impact caused by the sea for regional construction near the Yanwo Island in Zhoushan, China [J]. Water, 2019, 11(8): 1674. doi: 10.3390/w11081674

    [19]

    陈静, 王永学. 岸线变迁对大连湾内湾海域纳潮量的影响[J]. 海洋通报, 2016, 35(4):390-395 doi: 10.11840/j.issn.1001-6392.2016.04.005

    CHEN Jing, WANG Yongxue. Effect of the coastline changes on the tidal prism water quality of Dalian inner bays [J]. Marine Science Bulletin, 2016, 35(4): 390-395. doi: 10.11840/j.issn.1001-6392.2016.04.005

    [20]

    孙永根, 高俊国, 朱晓明. 钦州保税港区填海造地工程对海洋环境的影响[J]. 海洋科学, 2012, 36(12):84-89

    SUN Yonggen, GAO Junguo, ZHU Xiaoming. Effect of reclamation engineering in Qinzhou Bond Harbor on marine environment of Qinzhou Bay [J]. Marine Sciences, 2012, 36(12): 84-89.

    [21]

    王金华, 夏云峰, 杜峰, 等. 马尔代夫国际机场改扩建工程对潟湖水动力影响研究[J]. 施工技术, 2019, 48(4):28-31

    WANG Jinhua, XIA Yunfeng, DU Feng, et al. Impact research of reconstruction and extension project of maldives international airport on the hydrodynamics of the lagoon [J]. Construction Technology, 2019, 48(4): 28-31.

    [22]

    Rusdiansyah A, Tang Y L, He Z G, et al. The impacts of the large-scale hydraulic structures on tidal dynamics in open-type bay: numerical study in Jakarta Bay [J]. Ocean Dynamics, 2018, 68(9): 1141-1154. doi: 10.1007/s10236-018-1183-3

    [23]

    Xiao K, Li H L, Song D H, et al. Field measurements for investigating the dynamics of the tidal prism during a spring-neap tidal cycle in Jiaozhou Bay, China [J]. Journal of Coastal Research, 2019, 35(2): 335-347. doi: 10.2112/JCOASTRES-D-17-00121.1

    [24]

    Wang C, Zhang X Q, Sun Y L. Numerical simulation of water exchange characteristics of the Jiaozhou bay based on a three-dimensional Lagrangian model [J]. China Ocean Engineering, 2009, 23(2): 277-290.

    [25]

    Yuan Y, Jalón-Rojas I, Wang X H. Response of water-exchange capacity to human interventions in Jiaozhou Bay, China [J]. Estuarine, Coastal and Shelf Science, 2021, 249: 107088. doi: 10.1016/j.ecss.2020.107088

    [26]

    袁德奎, 李广, 王道生, 等. 围填海工程对渤海湾水交换能力影响的数值模拟[J]. 天津大学学报: 自然科学与工程技术版, 2015, 48(7):605-613

    YUAN Dekui, LI Guang, WANG Daosheng, et al. Numerical simulation of effects of land reclamation on water exchange capability of Bohai Bay [J]. Journal of Tianjin University: Science and Technology, 2015, 48(7): 605-613.

    [27]

    Ranasinghe R, Larson M, Savioli J. Shoreline response to a single shore-parallel submerged breakwater [J]. Coastal Engineering, 2010, 57(11-12): 1006-1017. doi: 10.1016/j.coastaleng.2010.06.002

    [28]

    王春玲, 武雅洁, 董启涛, 等. 日照豪迈码头港池布局对泥沙输移影响研究[J]. 中国海洋大学学报, 2019, 49(7):110-117

    WANG Chunling, WU Yajie, DONG Qitao, et al. Study on the impacts of the sediment transport on the Rizhao Haomai Harbor’s Layout [J]. Periodical of Ocean University of China, 2019, 49(7): 110-117.

    [29]

    匡翠萍, 钱从锐, 姚凯华, 等. 潮流与泥沙输运对黄骅港工程的响应分析[J]. 同济大学学报: 自然科学版, 2014, 42(10):1516-1522

    KUANG Cuiping, QIAN Congrui, YAO Kaihua, et al. Responses of tidal current and sediment transport to Huanghua Port [J]. Journal of Tongji University: Natural Science, 2014, 42(10): 1516-1522.

    [30]

    Chen J Y, Chen S L. Estuarine and coastal challenges in China [J]. Journal of Oceanology and Limnology, 2002, 20(2): 174-181. doi: 10.1007/BF02849656

    [31]

    Li T H, Han P, Zhao Z J. Impact analysis of coastal engineering projects on mangrove wetland area change with remote sensing [J]. China Ocean Engineering, 2008, 22(2): 347-358.

    [32]

    Chen Y P, Wei Y Q, Peng L H. Ecological technology model and path of seaport reclamation construction [J]. Ocean & Coastal Management, 2018, 165: 244-257.

    [33]

    Li K Y, Liu X B, Zhao X G, et al. Effects of reclamation projects on marine ecological environment in Tianjin harbor industrial zone [J]. Procedia Environmental Sciences, 2010, 2: 792-799. doi: 10.1016/j.proenv.2010.10.090

    [34]

    刘星池, 王永学, 陈静. 人工岛群分阶段建设对附近水沙环境影响的数值研究[J]. 海洋通报, 2017, 36(3):302-310 doi: 10.11840/j.issn.1001-6392.2017.03.008

    LIU Xingchi, WANG Yongxue, CHEN Jing. Study on the water-sediment environment of artificial islands constructed in stages by numerical simulation [J]. Marine Science Bulletin, 2017, 36(3): 302-310. doi: 10.11840/j.issn.1001-6392.2017.03.008

    [35]

    安永宁, 吴建政, 朱龙海, 等. 龙口湾冲淤特性对人工岛群建设的响应[J]. 海洋地质前沿, 2010, 26(10):24-30

    AN Yongning, WU Jianzheng, ZHU Longhai, et al. Response of erosion-deposition pattern to artificial islands construction in Longkou Bay [J]. Marine Geology Letters, 2010, 26(10): 24-30.

    [36]

    刘波, 胡日军, 李毅, 等. 夏季潮流作用下龙口湾海域悬浮泥沙时空变化特征及其输运机制[J]. 海洋地质前沿, 2020, 36(3):20-30

    LIU Bo, HU Rijun, LI Yi, et al. Spatio-temporal variation characteristics and transport mechanism of suspended sediments in Longkou bay under the influence of summer tidal current [J]. Marine Geology Frontiers, 2020, 36(3): 20-30.

    [37]

    任鹏, 孙志高, 赵全升, 等. 龙口湾表层沉积物碎屑矿物分布特征及影响因素[J]. 矿物岩石地球化学通报, 2016, 35(2):279-284 doi: 10.3969/j.issn.1007-2802.2016.02.007

    REN Peng, SUN Zhigao, ZHAO Quansheng, et al. Distribution characteristics and influencing factors of detrital mineralsin surficial sediments of the Longkou Bay [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(2): 279-284. doi: 10.3969/j.issn.1007-2802.2016.02.007

    [38]

    韩彬, 宋转玲, 曹磊, 等. 龙口湾近岸海域水质状况调查与评价[J]. 海洋科学进展, 2010, 28(2):186-192 doi: 10.3969/j.issn.1671-6647.2010.02.008

    HAN Bin, SONG Zhuanling, CAO Lei, et al. Survey and assessment of coastal seawater quality in Longkou Bay [J]. Advances in Marine Science, 2010, 28(2): 186-192. doi: 10.3969/j.issn.1671-6647.2010.02.008

    [39]

    Li D, Tang C, Hou X Y, et al. Rapid morphological changes caused by intensive coastal development in Longkou Bay, China [J]. Journal of Coastal Research, 2019, 35(3): 615-624. doi: 10.2112/JCOASTRES-D-18-00095.1

    [40]

    任鹏, 孙志高, 王传远, 等. 人工岛建设对龙口湾表层沉积物粒度及黏土矿物组成特征的影响[J]. 海洋科学进展, 2016, 34(4):578-587 doi: 10.3969/j.issn.1671-6647.2016.04.014

    REN Peng, SUN Zhigao, WANG Chuanyuan, et al. Impacts of construction of artificial islands on the flow-sediment regulation scheme on grain and clay compositions in the Longkou Bay [J]. Advances in Marine Science, 2016, 34(4): 578-587. doi: 10.3969/j.issn.1671-6647.2016.04.014

    [41]

    冯兴如, 杨德周, 尹宝树. FVCOM在龙口海域潮汐潮流模拟中的应用研究[J]. 海洋科学, 2010, 34(6):94-99

    FENG Xingru, YANG Dezhou, YIN Baoshu. Application of FVCOM in tidal modeling of the seas adjacent to Longkou City [J]. Marine Sciences, 2010, 34(6): 94-99.

    [42]

    中国海湾志编纂委员会. 中国海湾志(第三分册)[M]. 北京: 海洋出版社, 1991.

    China Bay Record Committee. The Bay Chorography in China: Bays in the South Shandong Peninsula and Jiangsu Province[M]. Beijing: China Ocean Press, 1993: 73-94.

    [43]

    许婷. 丹麦MIKE21模型概述及应用实例[J]. 水利科技与经济, 2010, 16(8):867-869 doi: 10.3969/j.issn.1006-7175.2010.08.013

    XU Ting. Calculation principle and application example of a two-dimensional flow model-MIKE21 HD [J]. Water Conservancy Science and Technology and Economy, 2010, 16(8): 867-869. doi: 10.3969/j.issn.1006-7175.2010.08.013

    [44]

    赵博. 莱州三山岛: 刁龙嘴近岸海域冲淤特征及影响因素研究[D]. 中国海洋大学硕士学位论文, 2014.

    ZHAO Bo. Study on characteristic and influence factors of erosion and deposition in Sanshan Island: Diaolongzui Area, Laizhou[D]. Master Dissertation of Ocean University of China, 2014.

    [45]

    邱桔斐, 马越, 徐新华. 长江口外海域波浪场数值模拟[J]. 水运工程, 2011(10):11-14 doi: 10.3969/j.issn.1002-4972.2011.10.003

    QIU Jufei, MA Yue, XU Xinhua. Numerical simulation of wave field around the Yangtze River estuary [J]. Port & Waterway Engineering, 2011(10): 11-14. doi: 10.3969/j.issn.1002-4972.2011.10.003

    [46]

    秦晓, 纪平, 赵懿珺. 东山湾水动力数值模拟及其纳潮量和水交换周期计算[J]. 水利水电技术, 2020, 51(6):93-99

    QIN Xiao, JI Ping, ZHAO Yijun. Hydrodynamic numerical simulation on Dongshan Bay and calculation of its tidal prism and water exchange cycle [J]. Water Resources and Hydropower Engineering, 2020, 51(6): 93-99.

    [47]

    叶海桃, 王义刚, 曹兵. 三沙湾纳潮量及湾内外的水交换[J]. 河海大学学报: 自然科学版, 2007, 35(1):96-98

    YE Haitao, WANG Yigang, CAO Bing. Tidal prism of Sansha Bay and its water exchange with the open sea [J]. Journal of Hohai University: Natural Sciences, 2007, 35(1): 96-98.

    [48]

    王宏, 陈丕茂, 贾晓平, 等. 海水交换能力的研究进展[J]. 南方水产, 2008, 4(2):75-80

    WANG Hong, CHEN Peimao, JIA Xiaoping, et al. Advance in the research on water exchange in the sea area [J]. South China Fisheries Science, 2008, 4(2): 75-80.

    [49]

    董礼先, 苏纪兰. 象山港水交换数值研究Ⅰ. 对流-扩散型的水交换模式[J]. 海洋与湖沼, 1999, 30(4):410-415 doi: 10.3321/j.issn:0029-814X.1999.04.010

    DONG Lixian, SU Jilan. Numerical study of the water exchange in the Xiangshan Bay I. Advection-diffusion water exchange model [J]. Oceanologia et Limnologia Sinica, 1999, 30(4): 410-415. doi: 10.3321/j.issn:0029-814X.1999.04.010

    [50]

    黄祖珂, 黄磊. 潮汐原理与计算[M]. 青岛: 中国海洋大学出版社, 2005.

    HUANG Zuke, HUANG Lei. Tidal Principle and Calculation[M]. Qingdao: China Ocean University Press, 2005.

    [51]

    陆志妹. 近岸水域波浪与结构物相互作用的数值模拟[D]. 上海交通大学硕士学位论文, 2007.

    LU Zhimei. Numerical simulation of wave interaction with structures in the coastal zone[D]. Master Dissertation of Shanghai Jiaotong University, 2007.

    [52]

    李文丹, 李孟国, 韩西军, 等. 港珠澳大桥珠澳口岸人工岛工程二维潮流泥沙数学模型研究[J]. 中国港湾建设, 2011(5):27-30, 39 doi: 10.3969/j.issn.1003-3688.2011.05.006

    LI Wendan, LI Mengguo, HAN Xijun, et al. 2-D tidal current and sediment modeling of Zhuhai-Macao artificial island of Hongkong-Zhuhai-Macao Bridge [J]. China Harbour Engineering, 2011(5): 27-30, 39. doi: 10.3969/j.issn.1003-3688.2011.05.006

    [53]

    朱雅琴, 张法星, 许唯临. 舌形挑流鼻坎水力特性研究[J]. 科学技术与工程, 2004(5):397-402, 408 doi: 10.3969/j.issn.1671-1815.2004.05.019

    ZHU Yaqin, ZHANG faxing, XU Welin. Research on hydraulic characteristics of flip bucket with Tongue-type [J]. Science Technology and Engineering, 2004(5): 397-402, 408. doi: 10.3969/j.issn.1671-1815.2004.05.019

    [54]

    李池鸿, 顾晨, 杨之彦, 等. 基于MIKE 21的码头潮流数学模型研究[J]. 港工技术, 2019, 56(S1):1-6

    LI Chihong, GU Chen, YANG Zhiyan, et al. Study on the mathematical model of wharf tidal based on MIKE 21 [J]. Port Engineering Technology, 2019, 56(S1): 1-6.

    [55]

    李瑞杰, 江森汇, 郑俊, 等. 日照港码头结构消浪的数值模拟[J]. 河海大学学报: 自然科学版, 2011, 39(2):190-194

    LI Ruijie, JIANG Senhui, ZHENG Jun, et al. Numerical simulation of wave dissipation on dock structure of Rizhao Port [J]. Journal of Hohai University: Natural Sciences, 2011, 39(2): 190-194.

    [56]

    刘功鹏. 山东莱州湾海域波浪数值模拟研究[J]. 水利水电快报, 2020, 41(4):57-60

    LIU Gongpeng. Numerical simulation of waves in Shandong Laizhou Bay [J]. Express Water Resources & Hydropower Information, 2020, 41(4): 57-60.

    [57]

    顾杰, 马悦, 王佳元, 等. 洋河-葡萄岛岸段养滩工程波浪响应特征研究[J]. 水动力学研究与进展, 2017, 32(1):18-24

    GU Jie, MA Yue, WANG Jiayuan, et al. Wave responses to beach nourishment at coast between Yang River and Putao Island [J]. Chinese Journal of Hydrodynamics, 2017, 32(1): 18-24.

    [58]

    张蔚, 严以新, 郑金海, 等. 珠江三角洲年际潮差长期变化趋势[J]. 水科学进展, 2010, 21(1):77-83

    ZHANG Wei, YAN Yixin, ZHENG Jinhai, et al. Interannual tidal range trend in Pearl River Delta [J]. Advances in Water Science, 2010, 21(1): 77-83.

    [59]

    蒋陈娟, 周佳楠, 杨清书. 珠江磨刀门河口潮汐动力变化对人类活动的响应[J]. 热带海洋学报, 2020, 39(6):66-76

    JIANG Chenjuan, ZHOU Jianan, YANG Qingshu. Effects of human intervention on tidal dynamics in the Modaomen Estuary, Pearl River [J]. Journal of Tropical Oceanography, 2020, 39(6): 66-76.

    [60]

    金中武, 卢金友, 吴华莉. 铜锣峡壅水作用机理研究[J]. 水动力学研究与进展, 2014, 29(5):552-564

    JIN Zhongwu, LU Jinyou, WU Huali. Study on the mechanison of backwater effect in Tongluoxia Gorge [J]. Chinese Journal of Hydrodynamics, 2014, 29(5): 552-564.

    [61]

    张莞君, 迟万清, 胡泽建, 等. 青岛胶州湾大桥建设对周边海域水动力环境影响的数值研究[J]. 海岸工程, 2015, 34(2):40-50 doi: 10.3969/j.issn.1002-3682.2015.02.005

    ZHANG Wanjun, CHI Wanqing, HU Zejian, et al. Numerical study on the effect of the Jiaozhou bay bridge construction on the hydrodynamic conditions in the surrounding sea area [J]. Coastal Engineering, 2015, 34(2): 40-50. doi: 10.3969/j.issn.1002-3682.2015.02.005

    [62]

    姜胜辉, 朱龙海, 胡日军, 等. 围填海工程对莱州湾水动力条件的影响[J]. 中国海洋大学学报, 2015, 45(10):74-80

    JIANG Shenghui, ZHU Longhai, HU Rijun, et al. The hydrodynamic response to reclamation in Laizhou Bay [J]. Periodical of Ocean University of China, 2015, 45(10): 74-80.

    [63]

    王勇智, 孙惠凤, 谷东起, 等. 罗源湾多年围填海工程对水动力环境的累积影响研究[J]. 中国海洋大学学报, 2015, 45(3):16-24

    WANG Yongzhi, SUN Huifeng, GU Dongqi, et al. Research on Cumulative effects of coastal reclamation on hydrodynamic environment in Luoyuan Bay [J]. Periodical of Ocean University of China, 2015, 45(3): 16-24.

    [64]

    刘明, 席小慧, 雷利元, 等. 锦州湾围填海工程对海湾水交换能力的影响[J]. 大连海洋大学学报, 2013, 28(1):110-114 doi: 10.3969/j.issn.2095-1388.2013.01.021

    LIU Ming, XI Xiaohui, LEI Liyuan, et al. The effects of coastal reclamation on hydrodynamics in Jinzhou Bay [J]. Journal of Dalian Ocean University, 2013, 28(1): 110-114. doi: 10.3969/j.issn.2095-1388.2013.01.021

    [65]

    朱金龙, 朱淑香, 魏潇, 等. 围填海影响下的芝罘湾水动力变化的数值研究[J]. 海洋湖沼通报, 2020(6):61-71

    ZHU Jinlong, ZHU Shuxiang, WEI Xiao, et al. Numerical simulation study on hydrodynamic changes of Zhifu Bay under the influence of reclamation [J]. Transactions of Oceanology and Limnology, 2020(6): 61-71.

    [66]

    张志飞, 诸裕良, 何杰. 多年围填海工程对湛江湾水动力环境的影响[J]. 水利水运工程学报, 2016(3):96-104

    ZHANG Zhifei, ZHU Yuliang, HE Jie. Influences of long term reclamation works on hydrodynamic environment in Zhanjiang bay [J]. Hydro-Science and Engineering, 2016(3): 96-104.

    [67]

    曾相明, 管卫兵, 潘冲. 象山港多年围填海工程对水动力影响的累积效应[J]. 海洋学研究, 2011, 29(1):73-83 doi: 10.3969/j.issn.1001-909X.2011.01.011

    ZENG Xiangming, GUAN Weibing, PAN Chong. Cumulative influence of long term reclamation on hydrodynamics in the Xiangshangang Bay [J]. Journal of Marine Sciences, 2011, 29(1): 73-83. doi: 10.3969/j.issn.1001-909X.2011.01.011

    [68]

    胡建宇. 罗源湾海水与外海水的交换研究[J]. 海洋环境科学, 1998, 17(3):51-54

    HU Jianyu. Study on the sea water exchange between the open sea and Luoyuan Bay [J]. Marine Environmental Science, 1998, 17(3): 51-54.

  • 加载中

(16)

(4)

计量
  • 文章访问数:  2764
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2021-02-13
修回日期:  2021-06-03
刊出日期:  2022-02-28

目录