南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示

区相文, 邬黛黛, 谢瑞, 吴能友, 刘丽华. 南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
引用本文: 区相文, 邬黛黛, 谢瑞, 吴能友, 刘丽华. 南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示[J]. 海洋地质与第四纪地质, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
OU Xiangwen, WU Daidai, XIE Rui, WU Nengyou, LIU Lihua. Fe-P-S geochemical characteristics of sediments in the Shenhu area of northern South China Sea and their implications for methane leakage[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501
Citation: OU Xiangwen, WU Daidai, XIE Rui, WU Nengyou, LIU Lihua. Fe-P-S geochemical characteristics of sediments in the Shenhu area of northern South China Sea and their implications for methane leakage[J]. Marine Geology & Quaternary Geology, 2022, 42(1): 96-110. doi: 10.16562/j.cnki.0256-1492.2021080501

南海北部神狐海域沉积物Fe-P-S元素地球化学特征及对甲烷渗漏的指示

  • 基金项目: 广东省基础与应用基础研究基金项目“南海北部冷泉区甲烷厌氧氧化(AOM)作用耦合模式研究”(2021A1515011509);广州市科技计划项目“南海北部冷泉区有孔虫特征研究及其对甲烷渗漏的指示”(201904010311);广东省促进经济发展专项资金(海洋经济发展用途)“南海天然气水合物高效开采与控制技术研究”(GDME-2018D002)
详细信息
    作者简介: 区相文(1994―),男,硕士生,主要从事海洋地质学和地球化学研究,E-mail:ouxw@ms.giec.ac.cn
    通讯作者: 邬黛黛(1981―),女,博士,研究员,主要从事海洋地质和地球化学研究,E-mail:wudd@ms.giec.ac.cn
  • 中图分类号: P736.4

Fe-P-S geochemical characteristics of sediments in the Shenhu area of northern South China Sea and their implications for methane leakage

More Information
  • 神狐海域是我国天然气水合物勘探试采的重点区域,在甲烷渗漏过程中会形成黄铁矿和蓝铁矿等具有指示意义的矿物,这些矿物和Fe、P、S等元素密切相关,通过Fe-P-S等元素地球化学特征来研究该区域的甲烷渗漏对进一步了解南海水合物的成藏状况有重要意义。本研究选取南海北部神狐海域Site 2A柱状沉积物为研究对象,通过对其主微量元素、铁结合磷、自生磷灰石态磷、碳酸盐铁、磁铁矿铁、还原性铁、铬还原硫、硫同位素以及总有机碳(TOC)等数据分析,研究该地区的Fe、P和S等元素之间的关系以及对甲烷渗漏的指示。研究发现,在600 cmbsf(centimeter below sea floor)深度以下的初级生产力水平随深度增加而略有升高。在600 cmbsf深度以下,沉积物中可指示黄铁矿的铬还原硫含量增加,其硫同位素明显正偏,说明可能存在甲烷厌氧氧化作用,根据沉积物中指示富镁方解石和文石的Mg/Ca和Sr/Ca、与自生碳酸盐有关的Sr/Ti和Ba/Ti均在600 cmbsf出现了峰值,以及铁结合磷和自生磷灰石态磷含量的增加,可推测600 cmbsf左右为硫酸盐—甲烷转换带(SMTZ)的上界。另外,铁结合磷的含量在SMTZ带明显增加,黄铁矿中的铬还原硫以及δ34S可以指示黄铁矿的含量,从而可以利用不同形态的Fe、P和S元素地球化学特征指示和识别甲烷渗漏。

  • 加载中
  • 图 1  Site 2A站位地理位置

    Figure 1. 

    图 2  Site 2A岩芯沉积物中TOC、Ba/Ti、Al/Ti、P/Ti变化趋势图

    Figure 2. 

    图 3  Site 2A岩芯沉积物中TOC和FeHR的相关性

    Figure 3. 

    图 4  Site 2A岩芯沉积物中高活性铁(FeHR)、总铁(FeT)、δ34S、黄铁矿铁(Fepy)、磁铁矿铁、碳酸盐铁、还原性铁、FeHR/FeT、Fepy/FeHR变化趋势图

    Figure 4. 

    图 5  Site 2A岩芯沉积物中黄铁矿(Fepy)和高活性铁(FeHR)的相关性以及碳酸盐铁和黄铁矿铁的相关性

    Figure 5. 

    图 6  Site 2A岩芯沉积物中Ca/Ti、Sr/Ti、Ba/Ti、S/Ti、Mg/Ca、Sr/Ca、Sr和Ba的变化趋势以及Bayon[19]的假定端元模型与Site 2A站位的Sr/Ca及Mg/Ca的关系

    Figure 6. 

    图 7  Site 2A岩芯沉积物中自生磷灰石态磷、铁氧化物结合态磷和TS/活性铁的变化趋势图

    Figure 7. 

    表 1  Site 2A岩心沉积物的主量元素组成

    Table 1.  Major element composition of core sediments from Site 2A

    样品编号深度SiAlCaFeMgTiSMnP
    Site 2A-001125.158.595.962.311.600.490.240.090.07
    Site 2A-0062324.778.495.462.261.590.480.170.070.06
    Site 2A-0114823.868.286.972.211.600.500.180.080.07
    Site 2A-0167323.858.186.442.251.630.480.210.070.06
    Site 2A-0219823.878.256.282.271.610.490.200.070.06
    Site 2A-02612323.938.275.882.311.650.490.190.080.07
    Site 2A-03114823.768.226.562.311.640.490.200.070.07
    Site 2A-03617323.278.136.452.281.560.500.190.080.06
    Site 2A-04119823.708.166.362.291.550.490.190.070.07
    Site 2A-04622323.498.045.922.311.570.480.180.080.06
    Site 2A-05124823.538.157.382.281.560.480.210.080.07
    Site 2A-05627324.198.206.712.331.640.500.220.080.06
    Site 2A-06129823.497.956.452.121.560.450.250.060.06
    Site 2A-06632323.797.897.132.211.490.480.230.060.06
    Site 2A-07134823.938.346.722.241.650.470.230.070.06
    Site 2A-07637324.238.456.482.261.630.480.190.070.06
    Site 2A-08139824.238.216.832.291.540.500.230.060.06
    Site 2A-08642324.048.176.662.251.560.490.240.070.06
    Site 2A-09144823.948.107.202.271.560.520.230.070.06
    Site 2A-09647323.538.166.922.311.530.510.220.060.06
    Site 2A-10149823.998.326.232.381.550.520.240.070.06
    Site 2A-10652323.538.225.352.371.570.510.240.090.05
    Site 2A-11154823.568.064.752.501.610.500.280.100.05
    Site 2A-11657322.808.014.732.541.500.540.280.110.05
    Site 2A-12159823.528.274.432.521.570.530.330.090.05
    Site 2A-12662323.758.354.902.411.560.500.290.100.06
    Site 2A-13164823.928.445.132.441.540.500.330.100.06
    Site 2A-13667319.807.195.221.801.290.380.260.060.05
    Site 2A-14169824.158.227.062.241.600.500.370.080.07
    Site 2A-14672324.328.297.122.221.630.490.410.100.07
    Site 2A-15174824.308.326.992.281.590.500.330.090.06
    Site 2A-15677324.148.047.442.201.570.490.450.090.06
    Site 2A-16179823.617.747.572.101.570.480.430.080.06
    Site 2A-16682322.647.547.082.151.480.460.390.080.06
      注:深度单位为cmbsf,元素单位为%。
    下载: 导出CSV

    表 2  Site 2A岩心沉积物的部分稀土微量元素组成和有机碳含量

    Table 2.  Rare earths elements, trace elements and TOC of core sediments from Site 2A

    样品编号深度VCrNiRbSrZrBaThUTOC
    Site 2A-001112172.946.312031013454311.42.310.621
    Site 2A-0062311972.644.812130113854611.52.990.629
    Site 2A-0114811468.544.211434913153210.83.080.853
    Site 2A-0167311570.643.211733113354111.33.060.772
    Site 2A-0219811671.44311932513053811.43.090.662
    Site 2A-02612311572.142.712030613752211.52.890.600
    Site 2A-03114811871.243.511933413552311.23.020.661
    Site 2A-03617311874.744.111932913752211.43.090.592
    Site 2A-04119811871.644.411734813352712.23.280.779
    Site 2A-04622311372.642.212032713652211.63.120.575
    Site 2A-05124811571.443.911936313454411.33.270.641
    Site 2A-05627311471.743.211733413252311.43.120.642
    Site 2A-06129811471.544.711635813652111.63.270.669
    Site 2A-06632311575.244.812035813752011.73.220.614
    Site 2A-0713481107141.811736013351111.53.170.604
    Site 2A-07637311475.443.712434214052212.13.180.622
    Site 2A-08139811173.943.711933513251311.83.350.642
    Site 2A-08642311275.144.212133113950911.93.190.596
    Site 2A-09144811877.247124355136510123.390.666
    Site 2A-09647311877.547.812334213451911.83.370.661
    Site 2A-10149811779.848.113032513852512.63.620.678
    Site 2A-1065231178048.812929113252112.23.150.738
    Site 2A-111548114804913225613549512.32.980.752
    Site 2A-11657311883.550.513725613650712.83.220.900
    Site 2A-12159811683.951.4139246133507133.170.798
    Site 2A-12662311782.149.813526713050312.83.140.773
    Site 2A-13164811681.149.613628213252812.73.210.884
    Site 2A-1366731167546.112534213451412.13.240.816
    Site 2A-14169811273.445.411935113748711.53.160.951
    Site 2A-14672311473.744.811935913449411.62.970.937
    Site 2A-15174811172.843.812034013648711.52.910.868
    Site 2A-15677310769.244.111536113448411.33.111.030
    Site 2A-16179810970.646.911338113250711.13.310.996
    Site 2A-16682310971.444.911735513451511.43.310.932
      注:深度单位为cmbsf,稀土微量元素单位为μg·g−1,TOC单位为%。
    下载: 导出CSV

    表 3  Site 2A岩心沉积物的铁氧化物结合态磷、自生磷灰石态磷、黄铁矿铁、碳酸盐铁和还原性铁含量以及δ34S数据

    Table 3.  Iron-bound phosphorus, authigenic apatite phosphorus, pyrite iron (Fepy), carbonate iron, reducing iron and δ34S of core sediments from Site 2A

    样品编号深度自生磷灰石态磷铁结合磷黄铁矿铁碳酸盐铁还原性铁磁铁矿铁δ34S-VCDT
    Site2A-013581 4809090096.43 0501 050−36.6
    Site2A-0231081 7701 61034873.83 110842−40.8
    Site2A-0331581 4701 60094656.02 430741−42.7
    Site2A-0432081 4901 6001 42052.62 470905−46.4
    Site2A-0532581 5001 3701 26040.43 310784
    Site2A-0633081 5302101 76049.92 4901 090−49.3
    Site2A-0733581 1601331 76048.72 660895−47.1
    Site2A-0834081 2703291 26066.43 170823−49.0
    Site2A-09345812501141 16062.93 260922−48.3
    Site2A-1035081090951 64068.23 0201 150−47.1
    Site2A-1135581200901 21061.92 9301 200−47.3
    Site2A-123608927901 98060.43 1301 010−48.1
    Site2A-1336589942242 64040.92 820950−45.9
    Site2A-1437081 3001424 04041.02 130888−43.5
    Site2A-1537581 3002104 19018.81 980672−40.3
    Site2A-1638081 2904303 96013.71 200811−37.4
      注:深度单位为cmbsf,磷和铁的单位为μg·g−1,S同位素单位为‰。
    下载: 导出CSV
  • [1]

    Collett T S. Natural gas hydrates of the prudhoe bay and kuparuk river area, north slope, alaska [J]. AAPG Bulletin, 1993, 77(5): 793-812.

    [2]

    Dallimore S R, Collett T S, Weber M, et al. Drilling program investigates permafrost gas hydrates [J]. Eos Transactions American Geophysical Union, 2002, 83(18): 193-198.

    [3]

    金丽娜, 于兴河, 董亦思, 等. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5):644-654

    JIN Li’na, YU Xinghe, DONG Yisi, et al. The evolution of Quaternary depositional system in gas hydrate exploration area in Qiongdongnan Basin and its relationship with BSR [J]. Natural Gas Geoscience, 2018, 29(5): 644-654.

    [4]

    李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214

    LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 204-214.

    [5]

    刘关勇, 王旭东, 黄慧文, 等. 南海北部烟囱状碳酸盐岩记录的冷泉流体活动演化特征研究[J]. 地球化学, 2017, 46(6):567-579 doi: 10.3969/j.issn.0379-1726.2017.06.007

    LIU Guanyong, WANG Xudong, HUANG Huiwen, et al. Variations in fluid sources and seepages archived in carbonate chimneys from the northern South China Sea [J]. Geochimica, 2017, 46(6): 567-579. doi: 10.3969/j.issn.0379-1726.2017.06.007

    [6]

    冯俊熙, 杨胜雄, 梁金强, 等. 南海北部神狐东南海域沉积物孔隙水地球化学特征及其对天然气水合物的指示[J]. 海洋地质前沿, 2017, 33(7):32-44

    FENG Junxi, YANG Shengxiong, LIANG Jinqiang, et al. Pore water geochemistry in shallow sediments from southeastern shenhu area of northern south china sea and their implications for gas hydrate occurrence [J]. Marine Geology Frontiers, 2017, 33(7): 32-44.

    [7]

    何家雄, 钟灿鸣, 姚永坚, 等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 2020, 36(12):1-14

    HE Jiaxiong, ZHONG Canming, YAO Yongjian, et al. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern south china sea [J]. Marine Geology Frontiers, 2020, 36(12): 1-14.

    [8]

    Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1-2): 129-150. doi: 10.1016/S0025-3227(01)00128-1

    [9]

    Jorgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017

    [10]

    Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.

    [11]

    Wehrmann L M, Titschack J, Böttcher M E, et al. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S. W. Ireland (IODP Expedition 307) [J]. Geobiology, 2015, 13(5): 424-442. doi: 10.1111/gbi.12147

    [12]

    Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009

    [13]

    Egger M, Jilbert T, Behrends T, et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments [J]. Geochimica et Cosmochimica Acta, 2015, 169: 217-235. doi: 10.1016/j.gca.2015.09.012

    [14]

    Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 277-283.

    [15]

    Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea [J]. Biogeosciences, 2018, 15(20): 6329-6348. doi: 10.5194/bg-15-6329-2018

    [16]

    Wu D D, Xie R, Liu J, et al. Zone of metal-driven anaerobic oxidation of methane is an important sink for phosphorus in the Taixinan Basin, South China Sea [J]. Marine Geology, 2020, 427: 106268. doi: 10.1016/j.margeo.2020.106268

    [17]

    Naehr T H, Eichhubl V, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1268-1291. doi: 10.1016/j.dsr2.2007.04.010

    [18]

    Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust [J]. Chemical Geology, 2009, 260(1-2): 47-56. doi: 10.1016/j.chemgeo.2008.11.020

    [19]

    Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007

    [20]

    Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008

    [21]

    杨克红, 初凤友, 叶黎明, 等. 南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别[J]. 吉林大学学报:地球科学版, 2014, 44(2):469-479

    YANG Kehong, CHU Fengyou, YE Liming, et al. Implication of methane seeps from sedimentary geochemical proxies (Sr/Ca & Mg/Ca) in the Northern South China Sea [J]. Journal of Jilin University:Earth Science Edition, 2014, 44(2): 469-479.

    [22]

    王竣雅, 邬黛黛, 陈雪刚. 南海神狐海域Site 4B沉积物地球化学特征及其对甲烷渗漏的指示意义[J]. 沉积学报, 2019, 37(3):648-660

    WANG Junya, WU Daidai, CHEN Xuegang. Geochemical characteristics of Site-4B sediments from the Shenhu Area of the South China Sea: implications for methane seepage [J]. Acta Sedimentologica Sinica, 2019, 37(3): 648-660.

    [23]

    林杞, 王家生, 付少英, 等. 南海北部沉积物中单质硫颗粒的发现及意义[J]. 中国科学:地球科学, 2015, 58(12):2271-2278 doi: 10.1007/s11430-015-5182-7

    LIN Qi, WANG Jiasheng, FU Shaoying, et al. Elemental sulfur in northern South China Sea sediments and its significance [J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. doi: 10.1007/s11430-015-5182-7

    [24]

    Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001

    [25]

    雷艳, 胡建芳, 向荣, 等. 末次盛冰期以来南海北部神狐海域沉积有机质的组成特征及其古气候/环境意义[J]. 海洋学报, 2017, 39(11):75-84

    LEI Yan, HU Jianfang, XIANG Rong, et al. Composition of sedimentary organic matter in Shenhu, northern South China Sea since the last glacial maximum and its implication for paleoclimate [J]. Haiyang Xuebao, 2017, 39(11): 75-84.

    [26]

    梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135

    LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 128-135.

    [27]

    钟志洪, 施和生, 朱明, 等. 珠江口盆地构造-地层格架及成因机制探讨[J]. 中国海上油气, 2014, 26(5):20-29

    ZHONG Zhihong, SHI Hesheng, ZHU Ming, et al. A discussion on the tectonic-stratigraphic framework and its origin mechanism in Pearl River Mouth basin [J]. China Offshore Oil and Gas, 2014, 26(5): 20-29.

    [28]

    Lin C C, Lin A T S, Liu C S, et al. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan [J]. Marine Geophysical Research, 2014, 35(1): 21-35. doi: 10.1007/s11001-013-9203-7

    [29]

    Liu C S, Huang I L, Teng L S. Structural features off southwestern Taiwan [J]. Marine Geology, 1997, 137(3-4): 305-319. doi: 10.1016/S0025-3227(96)00093-X

    [30]

    Suess E. RV Sonne cruise report SO 177: SiGer 2004; sino-german cooperative project; South China Sea continental margin: geological methane budget and environmental effects of methane emissions and gashydrates[R]. Bremerhaven: PANGAEA, 2005.

    [31]

    乔培军, 邵磊, 杨守业. 南海西南部晚更新世以来元素地球化学特征的古环境意义[J]. 海洋地质与第四纪地质, 2006, 26(4):59-65

    QIAO Peijun, SHAO Lei, YANG Shouye. The paleoenvironmental significance of the character of the element geochemistry in the southwestern south china sea since late pleistocene [J]. Marine Geology & Quaternary Geology, 2006, 26(4): 59-65.

    [32]

    刘畅, 廖伟森, 胡建芳, 等. 南海北部东沙海区海洋氧同位素3期以来沉积有机碳记录及其古气候/环境信息[J]. 地球化学, 2019, 48(5):483-492

    LIU Chang, LIAO Weisen, HU Jianfang, et al. Organic carbon records since the Marine Isotope Stage3 (MIS3) in Dongsha, the northern South China Sea: implications for paleoclimate and paleoenvironmental changes [J]. Geochimica, 2019, 48(5): 483-492.

    [33]

    Wu J F, Sunda W, Boyle E A, et al. Phosphate depletion in the western North Atlantic Ocean [J]. Science, 2000, 289(5480): 759-762. doi: 10.1126/science.289.5480.759

    [34]

    Luo Q Y, Zhong N N, Zhu L, et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, Northern North China [J]. Chinese Science Bulletin, 2013, 58(11): 1299-1309. doi: 10.1007/s11434-012-5534-z

    [35]

    Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications [J]. Paleoceanography, 2003, 18(2): 1054.

    [36]

    Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography, 2000, 15(6): 570-592. doi: 10.1029/1999PA000457

    [37]

    Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1-2): 65-83. doi: 10.1016/j.palaeo.2010.07.007

    [38]

    Li W H, Zhang Z H. Paleoenvironment and its control of the formation of oligocene marine source rocks in the deep-water area of the Northern South China Sea [J]. Energy & Fuels, 2017, 31(10): 10598-10611.

    [39]

    McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021.

    [40]

    Ren J L, Zhang J, Liu S M. A review on aluminum to titanium ratio as a geochemical proxy to reconstruct paleoproductivity [J]. Advances in Earth Science, 2005, 20(12): 1314-1320.

    [41]

    梅西, 张训华, 郑洪波, 等. 南海南部120ka以来元素地球化学记录的东亚夏季风变迁[J]. 矿物岩石地球化学通报, 2010, 29(2):134-141 doi: 10.3969/j.issn.1007-2802.2010.02.004

    MEI Xi, ZHANG Xunhua, ZHENG Hongbo, et al. Element geochemistry record in Southern South China Sea sediments during the past 120 ka and its implications for East Asian summer monsoon variation [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004

    [42]

    严德天, 汪建国, 张丽琴. 海相烃源岩中高活性铁丰度对古生产力的指示[J]. 中南大学学报:自然科学版, 2010, 41(1):293-298

    YAN Detian, WANG Jianguo, ZHANG Liqin. Relationship between highly reactive iron and palaeo-productivity in marine sediment [J]. Journal of Central South University:Science and Technology, 2010, 41(1): 293-298.

    [43]

    陈慈美, 蔡阿根, 陈雷. 铁对海洋硅藻的生物活性形式及其对藻类生长的影响[J]. 海洋通报, 1993, 12(3):49-55

    CHEN Cimei, CAI Agen, CHEN Lei. Bioavailability species of fe for marine diatom and effect on diatom growth [J]. Marine Science Bulletin, 1993, 12(3): 49-55.

    [44]

    Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction [J]. Nature, 1982, 296(5858): 643-645. doi: 10.1038/296643a0

    [45]

    Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751

    [46]

    Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572

    [47]

    Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales [J]. Chemical Geology, 1986, 54(1-2): 149-155. doi: 10.1016/0009-2541(86)90078-1

    [48]

    Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments [J]. Chemical Geology, 2005, 218(3-4): 203-221. doi: 10.1016/j.chemgeo.2005.01.007

    [49]

    Lyons P, Jones L, Goleby B, et al. Seismic structure and crustal architecture of the Fe oxide Cu-Au (IOCG) minerals system of the eastern Gawler Craton [J]. ASEG Extended Abstracts, 2006, 2006(1): 1-4.

    [50]

    Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of some Archean and Proterozoic iron formations [J]. Geochimica et Cosmochimica Acta, 2012, 80: 158-169. doi: 10.1016/j.gca.2011.12.001

    [51]

    Lyons T W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3367-3382. doi: 10.1016/S0016-7037(97)00174-9

    [52]

    Canfield D E. Reactive iron in marine sediments [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7

    [53]

    Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters, 2014, 399: 61-73. doi: 10.1016/j.jpgl.2014.04.047

    [54]

    余克服, 赵焕庭, 朱袁智. 南沙群岛永暑礁等8座环礁现代沉积物中Ca、Sr、Mg的特征[J]. 海洋通报, 1996, 15(3):54-63

    YU Kefu, ZHAO Huanting, ZHU Yuanzhi. Content characters about Ca, Sr and Mg in modern sediments from eight atolls of Nansha Islands [J]. Marine Science Bulletin, 1996, 15(3): 54-63.

    [55]

    Tryon M D, Brown K M. Fluid and chemical cycling at Bush Hill: Implications for gas- and hydrate-rich environments [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(12): Q12004.

    [56]

    Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu Area, Northern South China Sea: geochemical results [J]. Journal of Geological Research, 2011, 2011: 370298.

    [57]

    Xie R, Wu D D, Liu J, et al. Geochemical evidence of metal-driven anaerobic oxidation of methane in the Shenhu Area, the South China Sea [J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3559. doi: 10.3390/ijerph16193559

    [58]

    Sauer S, Crémière A, Knies J, et al. U-Th chronology and formation controls of methane-derived authigenic carbonates from the Hola trough seep area, northern Norway [J]. Chemical Geology, 2017, 470: 164-179. doi: 10.1016/j.chemgeo.2017.09.004

    [59]

    Filippelli G M. Controls on phosphorus concentration and accumulation in oceanic sediments [J]. Marine Geology, 1997, 139(1-4): 231-240. doi: 10.1016/S0025-3227(96)00113-2

    [60]

    Slomp C P, Mort H P, Jilbert T, et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane [J]. PLoS One, 2013, 8(4): e62386. doi: 10.1371/journal.pone.0062386

    [61]

    März C, Riedinger N, Sena C, et al. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates [J]. Marine Geology, 2018, 404: 84-96. doi: 10.1016/j.margeo.2018.07.010

    [62]

    Rothe M, Kleeberg A, Grüneberg B, et al. Sedimentary sulphur: iron ratio indicates vivianite occurrence: a study from two contrasting freshwater systems [J]. PLoS One, 2015, 10(11): e0143737. doi: 10.1371/journal.pone.0143737

    [63]

    Kubeneck L J, Lenstra W K, Malkin S Y, et al. Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments [J]. Marine Chemistry, 2021, 231: 103948. doi: 10.1016/j.marchem.2021.103948

    [64]

    Lenstra W K, Egger M, Van Helmond N A G M, et al. Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial [J]. Biogeosciences, 2018, 15(22): 6979-6996. doi: 10.5194/bg-15-6979-2018

  • 加载中

(7)

(3)

计量
  • 文章访问数:  2976
  • PDF下载数:  107
  • 施引文献:  0
出版历程
收稿日期:  2021-08-05
修回日期:  2021-09-02
录用日期:  2021-09-02
刊出日期:  2022-02-28

目录