Fe-P-S geochemical characteristics of sediments in the Shenhu area of northern South China Sea and their implications for methane leakage
-
摘要:
神狐海域是我国天然气水合物勘探试采的重点区域,在甲烷渗漏过程中会形成黄铁矿和蓝铁矿等具有指示意义的矿物,这些矿物和Fe、P、S等元素密切相关,通过Fe-P-S等元素地球化学特征来研究该区域的甲烷渗漏对进一步了解南海水合物的成藏状况有重要意义。本研究选取南海北部神狐海域Site 2A柱状沉积物为研究对象,通过对其主微量元素、铁结合磷、自生磷灰石态磷、碳酸盐铁、磁铁矿铁、还原性铁、铬还原硫、硫同位素以及总有机碳(TOC)等数据分析,研究该地区的Fe、P和S等元素之间的关系以及对甲烷渗漏的指示。研究发现,在600 cmbsf(centimeter below sea floor)深度以下的初级生产力水平随深度增加而略有升高。在600 cmbsf深度以下,沉积物中可指示黄铁矿的铬还原硫含量增加,其硫同位素明显正偏,说明可能存在甲烷厌氧氧化作用,根据沉积物中指示富镁方解石和文石的Mg/Ca和Sr/Ca、与自生碳酸盐有关的Sr/Ti和Ba/Ti均在600 cmbsf出现了峰值,以及铁结合磷和自生磷灰石态磷含量的增加,可推测600 cmbsf左右为硫酸盐—甲烷转换带(SMTZ)的上界。另外,铁结合磷的含量在SMTZ带明显增加,黄铁矿中的铬还原硫以及δ34S可以指示黄铁矿的含量,从而可以利用不同形态的Fe、P和S元素地球化学特征指示和识别甲烷渗漏。
Abstract:The Shenhu area is a key area in China for gas hydrate exploration and trial production. Research results suggest that such elements as Fe-P-S, are easily affected by the anaerobic oxidation of the methane (AOM) to form the minerals of pyrite and viviante. To study the methane seep intensity and hydrate accumulation potential of the area through Fe-P-S and other elements and their geochemical characteristics has reference significance for further understanding the gas hydrate accumulation mechanisms. In this paper, the core sediments from the Site 2A of the Shenhu area in the north of South China Sea are selected as the research target. Upon the basis of previous studies, the relationship among Fe, P, S and their implications for methane leakage are studied with the analysis data of major and trace elements, iron-bound phosphorus, authigenic apatite phosphorus, carbonate iron, magnetite iron, reducing iron, chromium-reduced sulfur (CRS), sulfur isotopes, and total organic carbon (TOC). All the data of TOC, P/Ti, Al/Ti, Ba/Ti, high active iron (FeHR) and other productivity indicators from the Site 2A station indicate a medium level of primary productivity. The primary productivity below 600 cmbsf (centimeter below sea floor) in water depth increases slightly deepwards. CRS content increases below 600 cmbsf and its sulfur isotope is obviously positive, which indicates the existence of AOM. The Mg/Ca and Sr/Ca are indicators of high magnesium calcite and aragonite in sediments, and Sr/Ti and Ba/Ti contents related to authigenic carbonate. They all leave peaks at 600 cmbsf, and the water around this depth, the contents of Iron-bound phosphorus and Authigenic apatite phosphorus are also high. Therefore, we speculate that the depth of 600 cmbsf is most probably the upper boundary of Sulfate Methane Transition Zone (SMTZ). The research further suggests that the content of iron-bound phosphorus increases significantly in the SMTZ, CRS and δ34S in pyrite and may indicate the content of pyrite, so that methane seep can be recognized by different forms of Fe, P and S elements.
-
Key words:
- methane seep /
- paleo-productivity /
- elemental geochemistry /
- AOM /
- Shenhu area
-
-
图 6 Site 2A岩芯沉积物中Ca/Ti、Sr/Ti、Ba/Ti、S/Ti、Mg/Ca、Sr/Ca、Sr和Ba的变化趋势以及Bayon[19]的假定端元模型与Site 2A站位的Sr/Ca及Mg/Ca的关系
Figure 6.
表 1 Site 2A岩心沉积物的主量元素组成
Table 1. Major element composition of core sediments from Site 2A
样品编号 深度 Si Al Ca Fe Mg Ti S Mn P Site 2A-001 1 25.15 8.59 5.96 2.31 1.60 0.49 0.24 0.09 0.07 Site 2A-006 23 24.77 8.49 5.46 2.26 1.59 0.48 0.17 0.07 0.06 Site 2A-011 48 23.86 8.28 6.97 2.21 1.60 0.50 0.18 0.08 0.07 Site 2A-016 73 23.85 8.18 6.44 2.25 1.63 0.48 0.21 0.07 0.06 Site 2A-021 98 23.87 8.25 6.28 2.27 1.61 0.49 0.20 0.07 0.06 Site 2A-026 123 23.93 8.27 5.88 2.31 1.65 0.49 0.19 0.08 0.07 Site 2A-031 148 23.76 8.22 6.56 2.31 1.64 0.49 0.20 0.07 0.07 Site 2A-036 173 23.27 8.13 6.45 2.28 1.56 0.50 0.19 0.08 0.06 Site 2A-041 198 23.70 8.16 6.36 2.29 1.55 0.49 0.19 0.07 0.07 Site 2A-046 223 23.49 8.04 5.92 2.31 1.57 0.48 0.18 0.08 0.06 Site 2A-051 248 23.53 8.15 7.38 2.28 1.56 0.48 0.21 0.08 0.07 Site 2A-056 273 24.19 8.20 6.71 2.33 1.64 0.50 0.22 0.08 0.06 Site 2A-061 298 23.49 7.95 6.45 2.12 1.56 0.45 0.25 0.06 0.06 Site 2A-066 323 23.79 7.89 7.13 2.21 1.49 0.48 0.23 0.06 0.06 Site 2A-071 348 23.93 8.34 6.72 2.24 1.65 0.47 0.23 0.07 0.06 Site 2A-076 373 24.23 8.45 6.48 2.26 1.63 0.48 0.19 0.07 0.06 Site 2A-081 398 24.23 8.21 6.83 2.29 1.54 0.50 0.23 0.06 0.06 Site 2A-086 423 24.04 8.17 6.66 2.25 1.56 0.49 0.24 0.07 0.06 Site 2A-091 448 23.94 8.10 7.20 2.27 1.56 0.52 0.23 0.07 0.06 Site 2A-096 473 23.53 8.16 6.92 2.31 1.53 0.51 0.22 0.06 0.06 Site 2A-101 498 23.99 8.32 6.23 2.38 1.55 0.52 0.24 0.07 0.06 Site 2A-106 523 23.53 8.22 5.35 2.37 1.57 0.51 0.24 0.09 0.05 Site 2A-111 548 23.56 8.06 4.75 2.50 1.61 0.50 0.28 0.10 0.05 Site 2A-116 573 22.80 8.01 4.73 2.54 1.50 0.54 0.28 0.11 0.05 Site 2A-121 598 23.52 8.27 4.43 2.52 1.57 0.53 0.33 0.09 0.05 Site 2A-126 623 23.75 8.35 4.90 2.41 1.56 0.50 0.29 0.10 0.06 Site 2A-131 648 23.92 8.44 5.13 2.44 1.54 0.50 0.33 0.10 0.06 Site 2A-136 673 19.80 7.19 5.22 1.80 1.29 0.38 0.26 0.06 0.05 Site 2A-141 698 24.15 8.22 7.06 2.24 1.60 0.50 0.37 0.08 0.07 Site 2A-146 723 24.32 8.29 7.12 2.22 1.63 0.49 0.41 0.10 0.07 Site 2A-151 748 24.30 8.32 6.99 2.28 1.59 0.50 0.33 0.09 0.06 Site 2A-156 773 24.14 8.04 7.44 2.20 1.57 0.49 0.45 0.09 0.06 Site 2A-161 798 23.61 7.74 7.57 2.10 1.57 0.48 0.43 0.08 0.06 Site 2A-166 823 22.64 7.54 7.08 2.15 1.48 0.46 0.39 0.08 0.06 注:深度单位为cmbsf,元素单位为%。 表 2 Site 2A岩心沉积物的部分稀土微量元素组成和有机碳含量
Table 2. Rare earths elements, trace elements and TOC of core sediments from Site 2A
样品编号 深度 V Cr Ni Rb Sr Zr Ba Th U TOC Site 2A-001 1 121 72.9 46.3 120 310 134 543 11.4 2.31 0.621 Site 2A-006 23 119 72.6 44.8 121 301 138 546 11.5 2.99 0.629 Site 2A-011 48 114 68.5 44.2 114 349 131 532 10.8 3.08 0.853 Site 2A-016 73 115 70.6 43.2 117 331 133 541 11.3 3.06 0.772 Site 2A-021 98 116 71.4 43 119 325 130 538 11.4 3.09 0.662 Site 2A-026 123 115 72.1 42.7 120 306 137 522 11.5 2.89 0.600 Site 2A-031 148 118 71.2 43.5 119 334 135 523 11.2 3.02 0.661 Site 2A-036 173 118 74.7 44.1 119 329 137 522 11.4 3.09 0.592 Site 2A-041 198 118 71.6 44.4 117 348 133 527 12.2 3.28 0.779 Site 2A-046 223 113 72.6 42.2 120 327 136 522 11.6 3.12 0.575 Site 2A-051 248 115 71.4 43.9 119 363 134 544 11.3 3.27 0.641 Site 2A-056 273 114 71.7 43.2 117 334 132 523 11.4 3.12 0.642 Site 2A-061 298 114 71.5 44.7 116 358 136 521 11.6 3.27 0.669 Site 2A-066 323 115 75.2 44.8 120 358 137 520 11.7 3.22 0.614 Site 2A-071 348 110 71 41.8 117 360 133 511 11.5 3.17 0.604 Site 2A-076 373 114 75.4 43.7 124 342 140 522 12.1 3.18 0.622 Site 2A-081 398 111 73.9 43.7 119 335 132 513 11.8 3.35 0.642 Site 2A-086 423 112 75.1 44.2 121 331 139 509 11.9 3.19 0.596 Site 2A-091 448 118 77.2 47 124 355 136 510 12 3.39 0.666 Site 2A-096 473 118 77.5 47.8 123 342 134 519 11.8 3.37 0.661 Site 2A-101 498 117 79.8 48.1 130 325 138 525 12.6 3.62 0.678 Site 2A-106 523 117 80 48.8 129 291 132 521 12.2 3.15 0.738 Site 2A-111 548 114 80 49 132 256 135 495 12.3 2.98 0.752 Site 2A-116 573 118 83.5 50.5 137 256 136 507 12.8 3.22 0.900 Site 2A-121 598 116 83.9 51.4 139 246 133 507 13 3.17 0.798 Site 2A-126 623 117 82.1 49.8 135 267 130 503 12.8 3.14 0.773 Site 2A-131 648 116 81.1 49.6 136 282 132 528 12.7 3.21 0.884 Site 2A-136 673 116 75 46.1 125 342 134 514 12.1 3.24 0.816 Site 2A-141 698 112 73.4 45.4 119 351 137 487 11.5 3.16 0.951 Site 2A-146 723 114 73.7 44.8 119 359 134 494 11.6 2.97 0.937 Site 2A-151 748 111 72.8 43.8 120 340 136 487 11.5 2.91 0.868 Site 2A-156 773 107 69.2 44.1 115 361 134 484 11.3 3.11 1.030 Site 2A-161 798 109 70.6 46.9 113 381 132 507 11.1 3.31 0.996 Site 2A-166 823 109 71.4 44.9 117 355 134 515 11.4 3.31 0.932 注:深度单位为cmbsf,稀土微量元素单位为μg·g−1,TOC单位为%。 表 3 Site 2A岩心沉积物的铁氧化物结合态磷、自生磷灰石态磷、黄铁矿铁、碳酸盐铁和还原性铁含量以及δ34S数据
Table 3. Iron-bound phosphorus, authigenic apatite phosphorus, pyrite iron (Fepy), carbonate iron, reducing iron and δ34S of core sediments from Site 2A
样品编号 深度 自生磷灰石态磷 铁结合磷 黄铁矿铁 碳酸盐铁 还原性铁 磁铁矿铁 δ34S-VCDT Site2A-013 58 1 480 90 900 96.4 3 050 1 050 −36.6 Site2A-023 108 1 770 1 610 348 73.8 3 110 842 −40.8 Site2A-033 158 1 470 1 600 946 56.0 2 430 741 −42.7 Site2A-043 208 1 490 1 600 1 420 52.6 2 470 905 −46.4 Site2A-053 258 1 500 1 370 1 260 40.4 3 310 784 − Site2A-063 308 1 530 210 1 760 49.9 2 490 1 090 −49.3 Site2A-073 358 1 160 133 1 760 48.7 2 660 895 −47.1 Site2A-083 408 1 270 329 1 260 66.4 3 170 823 −49.0 Site2A-093 458 1250 114 1 160 62.9 3 260 922 −48.3 Site2A-103 508 1090 95 1 640 68.2 3 020 1 150 −47.1 Site2A-113 558 1200 90 1 210 61.9 2 930 1 200 −47.3 Site2A-123 608 927 90 1 980 60.4 3 130 1 010 −48.1 Site2A-133 658 994 224 2 640 40.9 2 820 950 −45.9 Site2A-143 708 1 300 142 4 040 41.0 2 130 888 −43.5 Site2A-153 758 1 300 210 4 190 18.8 1 980 672 −40.3 Site2A-163 808 1 290 430 3 960 13.7 1 200 811 −37.4 注:深度单位为cmbsf,磷和铁的单位为μg·g−1,S同位素单位为‰。 -
[1] Collett T S. Natural gas hydrates of the prudhoe bay and kuparuk river area, north slope, alaska [J]. AAPG Bulletin, 1993, 77(5): 793-812.
[2] Dallimore S R, Collett T S, Weber M, et al. Drilling program investigates permafrost gas hydrates [J]. Eos Transactions American Geophysical Union, 2002, 83(18): 193-198.
[3] 金丽娜, 于兴河, 董亦思, 等. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5):644-654
JIN Li’na, YU Xinghe, DONG Yisi, et al. The evolution of Quaternary depositional system in gas hydrate exploration area in Qiongdongnan Basin and its relationship with BSR [J]. Natural Gas Geoscience, 2018, 29(5): 644-654.
[4] 李进, 王淑红, 颜文. 海底泥火山及其与油气和天然气水合物的关系[J]. 海洋地质与第四纪地质, 2017, 37(6):204-214
LI Jin, WANG Shuhong, YAN Wen. Seabed mud volcano and its bearing on oil-gas and gas hydrate [J]. Marine Geology & Quaternary Geology, 2017, 37(6): 204-214.
[5] 刘关勇, 王旭东, 黄慧文, 等. 南海北部烟囱状碳酸盐岩记录的冷泉流体活动演化特征研究[J]. 地球化学, 2017, 46(6):567-579 doi: 10.3969/j.issn.0379-1726.2017.06.007
LIU Guanyong, WANG Xudong, HUANG Huiwen, et al. Variations in fluid sources and seepages archived in carbonate chimneys from the northern South China Sea [J]. Geochimica, 2017, 46(6): 567-579. doi: 10.3969/j.issn.0379-1726.2017.06.007
[6] 冯俊熙, 杨胜雄, 梁金强, 等. 南海北部神狐东南海域沉积物孔隙水地球化学特征及其对天然气水合物的指示[J]. 海洋地质前沿, 2017, 33(7):32-44
FENG Junxi, YANG Shengxiong, LIANG Jinqiang, et al. Pore water geochemistry in shallow sediments from southeastern shenhu area of northern south china sea and their implications for gas hydrate occurrence [J]. Marine Geology Frontiers, 2017, 33(7): 32-44.
[7] 何家雄, 钟灿鸣, 姚永坚, 等. 南海北部天然气水合物勘查试采及研究进展与勘探前景[J]. 海洋地质前沿, 2020, 36(12):1-14
HE Jiaxiong, ZHONG Canming, YAO Yongjian, et al. The exploration and production test of gas hydrate and its research progress and exploration prospect in the northern south china sea [J]. Marine Geology Frontiers, 2020, 36(12): 1-14.
[8] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea [J]. Marine Geology, 2001, 177(1-2): 129-150. doi: 10.1016/S0025-3227(01)00128-1
[9] Jorgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments [J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095-2118. doi: 10.1016/j.gca.2003.07.017
[10] Peketi A, Mazumdar A, Joshi R K, et al. Tracing the Paleo sulfate-methane transition zones and H2S seepage events in marine sediments: An application of C-S-Mo systematics [J]. Geochemistry, Geophysics, Geosystems, 2012, 13(10): Q10007.
[11] Wehrmann L M, Titschack J, Böttcher M E, et al. Linking sedimentary sulfur and iron biogeochemistry to growth patterns of a cold-water coral mound in the Porcupine Basin, S. W. Ireland (IODP Expedition 307) [J]. Geobiology, 2015, 13(5): 424-442. doi: 10.1111/gbi.12147
[12] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record? [J]. Marine and Petroleum Geology, 2013, 43: 381-395. doi: 10.1016/j.marpetgeo.2012.12.009
[13] Egger M, Jilbert T, Behrends T, et al. Vivianite is a major sink for phosphorus in methanogenic coastal surface sediments [J]. Geochimica et Cosmochimica Acta, 2015, 169: 217-235. doi: 10.1016/j.gca.2015.09.012
[14] Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments [J]. Environmental Science & Technology, 2015, 49(1): 277-283.
[15] Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea [J]. Biogeosciences, 2018, 15(20): 6329-6348. doi: 10.5194/bg-15-6329-2018
[16] Wu D D, Xie R, Liu J, et al. Zone of metal-driven anaerobic oxidation of methane is an important sink for phosphorus in the Taixinan Basin, South China Sea [J]. Marine Geology, 2020, 427: 106268. doi: 10.1016/j.margeo.2020.106268
[17] Naehr T H, Eichhubl V, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: a comparative study [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2007, 54(11-13): 1268-1291. doi: 10.1016/j.dsr2.2007.04.010
[18] Bayon G, Henderson G M, Bohn M. U-Th stratigraphy of a cold seep carbonate crust [J]. Chemical Geology, 2009, 260(1-2): 47-56. doi: 10.1016/j.chemgeo.2008.11.020
[19] Bayon G, Pierre C, Etoubleau J, et al. Sr/Ca and Mg/Ca ratios in Niger Delta sediments: implications for authigenic carbonate genesis in cold seep environments [J]. Marine Geology, 2007, 241(1-4): 93-109. doi: 10.1016/j.margeo.2007.03.007
[20] Nöthen K, Kasten S. Reconstructing changes in seep activity by means of pore water and solid phase Sr/Ca and Mg/Ca ratios in pockmark sediments of the Northern Congo Fan [J]. Marine Geology, 2011, 287(1-4): 1-13. doi: 10.1016/j.margeo.2011.06.008
[21] 杨克红, 初凤友, 叶黎明, 等. 南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca和Mg/Ca)识别[J]. 吉林大学学报:地球科学版, 2014, 44(2):469-479
YANG Kehong, CHU Fengyou, YE Liming, et al. Implication of methane seeps from sedimentary geochemical proxies (Sr/Ca & Mg/Ca) in the Northern South China Sea [J]. Journal of Jilin University:Earth Science Edition, 2014, 44(2): 469-479.
[22] 王竣雅, 邬黛黛, 陈雪刚. 南海神狐海域Site 4B沉积物地球化学特征及其对甲烷渗漏的指示意义[J]. 沉积学报, 2019, 37(3):648-660
WANG Junya, WU Daidai, CHEN Xuegang. Geochemical characteristics of Site-4B sediments from the Shenhu Area of the South China Sea: implications for methane seepage [J]. Acta Sedimentologica Sinica, 2019, 37(3): 648-660.
[23] 林杞, 王家生, 付少英, 等. 南海北部沉积物中单质硫颗粒的发现及意义[J]. 中国科学:地球科学, 2015, 58(12):2271-2278 doi: 10.1007/s11430-015-5182-7
LIN Qi, WANG Jiasheng, FU Shaoying, et al. Elemental sulfur in northern South China Sea sediments and its significance [J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. doi: 10.1007/s11430-015-5182-7
[24] Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea [J]. Journal of Asian Earth Sciences, 2016, 115: 547-556. doi: 10.1016/j.jseaes.2015.11.001
[25] 雷艳, 胡建芳, 向荣, 等. 末次盛冰期以来南海北部神狐海域沉积有机质的组成特征及其古气候/环境意义[J]. 海洋学报, 2017, 39(11):75-84
LEI Yan, HU Jianfang, XIANG Rong, et al. Composition of sedimentary organic matter in Shenhu, northern South China Sea since the last glacial maximum and its implication for paleoclimate [J]. Haiyang Xuebao, 2017, 39(11): 75-84.
[26] 梁金强, 王宏斌, 苏新, 等. 南海北部陆坡天然气水合物成藏条件及其控制因素[J]. 天然气工业, 2014, 34(7):128-135
LIANG Jinqiang, WANG Hongbin, SU Xin, et al. Natural gas hydrate formation conditions and the associated controlling factors in the northern slope of the South China Sea [J]. Natural Gas Industry, 2014, 34(7): 128-135.
[27] 钟志洪, 施和生, 朱明, 等. 珠江口盆地构造-地层格架及成因机制探讨[J]. 中国海上油气, 2014, 26(5):20-29
ZHONG Zhihong, SHI Hesheng, ZHU Ming, et al. A discussion on the tectonic-stratigraphic framework and its origin mechanism in Pearl River Mouth basin [J]. China Offshore Oil and Gas, 2014, 26(5): 20-29.
[28] Lin C C, Lin A T S, Liu C S, et al. Canyon-infilling and gas hydrate occurrences in the frontal fold of the offshore accretionary wedge off southern Taiwan [J]. Marine Geophysical Research, 2014, 35(1): 21-35. doi: 10.1007/s11001-013-9203-7
[29] Liu C S, Huang I L, Teng L S. Structural features off southwestern Taiwan [J]. Marine Geology, 1997, 137(3-4): 305-319. doi: 10.1016/S0025-3227(96)00093-X
[30] Suess E. RV Sonne cruise report SO 177: SiGer 2004; sino-german cooperative project; South China Sea continental margin: geological methane budget and environmental effects of methane emissions and gashydrates[R]. Bremerhaven: PANGAEA, 2005.
[31] 乔培军, 邵磊, 杨守业. 南海西南部晚更新世以来元素地球化学特征的古环境意义[J]. 海洋地质与第四纪地质, 2006, 26(4):59-65
QIAO Peijun, SHAO Lei, YANG Shouye. The paleoenvironmental significance of the character of the element geochemistry in the southwestern south china sea since late pleistocene [J]. Marine Geology & Quaternary Geology, 2006, 26(4): 59-65.
[32] 刘畅, 廖伟森, 胡建芳, 等. 南海北部东沙海区海洋氧同位素3期以来沉积有机碳记录及其古气候/环境信息[J]. 地球化学, 2019, 48(5):483-492
LIU Chang, LIAO Weisen, HU Jianfang, et al. Organic carbon records since the Marine Isotope Stage3 (MIS3) in Dongsha, the northern South China Sea: implications for paleoclimate and paleoenvironmental changes [J]. Geochimica, 2019, 48(5): 483-492.
[33] Wu J F, Sunda W, Boyle E A, et al. Phosphate depletion in the western North Atlantic Ocean [J]. Science, 2000, 289(5480): 759-762. doi: 10.1126/science.289.5480.759
[34] Luo Q Y, Zhong N N, Zhu L, et al. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, Northern North China [J]. Chinese Science Bulletin, 2013, 58(11): 1299-1309. doi: 10.1007/s11434-012-5534-z
[35] Wei G J, Liu Y, Li X H, et al. High-resolution elemental records from the South China Sea and their paleoproductivity implications [J]. Paleoceanography, 2003, 18(2): 1054.
[36] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr [J]. Paleoceanography, 2000, 15(6): 570-592. doi: 10.1029/1999PA000457
[37] Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian-Triassic Panthalassic Ocean [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1-2): 65-83. doi: 10.1016/j.palaeo.2010.07.007
[38] Li W H, Zhang Z H. Paleoenvironment and its control of the formation of oligocene marine source rocks in the deep-water area of the Northern South China Sea [J]. Energy & Fuels, 2017, 31(10): 10598-10611.
[39] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 1021.
[40] Ren J L, Zhang J, Liu S M. A review on aluminum to titanium ratio as a geochemical proxy to reconstruct paleoproductivity [J]. Advances in Earth Science, 2005, 20(12): 1314-1320.
[41] 梅西, 张训华, 郑洪波, 等. 南海南部120ka以来元素地球化学记录的东亚夏季风变迁[J]. 矿物岩石地球化学通报, 2010, 29(2):134-141 doi: 10.3969/j.issn.1007-2802.2010.02.004
MEI Xi, ZHANG Xunhua, ZHENG Hongbo, et al. Element geochemistry record in Southern South China Sea sediments during the past 120 ka and its implications for East Asian summer monsoon variation [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2): 134-141. doi: 10.3969/j.issn.1007-2802.2010.02.004
[42] 严德天, 汪建国, 张丽琴. 海相烃源岩中高活性铁丰度对古生产力的指示[J]. 中南大学学报:自然科学版, 2010, 41(1):293-298
YAN Detian, WANG Jianguo, ZHANG Liqin. Relationship between highly reactive iron and palaeo-productivity in marine sediment [J]. Journal of Central South University:Science and Technology, 2010, 41(1): 293-298.
[43] 陈慈美, 蔡阿根, 陈雷. 铁对海洋硅藻的生物活性形式及其对藻类生长的影响[J]. 海洋通报, 1993, 12(3):49-55
CHEN Cimei, CAI Agen, CHEN Lei. Bioavailability species of fe for marine diatom and effect on diatom growth [J]. Marine Science Bulletin, 1993, 12(3): 49-55.
[44] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction [J]. Nature, 1982, 296(5858): 643-645. doi: 10.1038/296643a0
[45] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments [J]. Nature, 1999, 398(6730): 802-805. doi: 10.1038/19751
[46] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane [J]. Nature, 2000, 407(6804): 623-626. doi: 10.1038/35036572
[47] Canfield D E, Raiswell R, Westrich J T, et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales [J]. Chemical Geology, 1986, 54(1-2): 149-155. doi: 10.1016/0009-2541(86)90078-1
[48] Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments [J]. Chemical Geology, 2005, 218(3-4): 203-221. doi: 10.1016/j.chemgeo.2005.01.007
[49] Lyons P, Jones L, Goleby B, et al. Seismic structure and crustal architecture of the Fe oxide Cu-Au (IOCG) minerals system of the eastern Gawler Craton [J]. ASEG Extended Abstracts, 2006, 2006(1): 1-4.
[50] Planavsky N, Rouxel O J, Bekker A, et al. Iron isotope composition of some Archean and Proterozoic iron formations [J]. Geochimica et Cosmochimica Acta, 2012, 80: 158-169. doi: 10.1016/j.gca.2011.12.001
[51] Lyons T W. Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea [J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3367-3382. doi: 10.1016/S0016-7037(97)00174-9
[52] Canfield D E. Reactive iron in marine sediments [J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7
[53] Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration [J]. Earth and Planetary Science Letters, 2014, 399: 61-73. doi: 10.1016/j.jpgl.2014.04.047
[54] 余克服, 赵焕庭, 朱袁智. 南沙群岛永暑礁等8座环礁现代沉积物中Ca、Sr、Mg的特征[J]. 海洋通报, 1996, 15(3):54-63
YU Kefu, ZHAO Huanting, ZHU Yuanzhi. Content characters about Ca, Sr and Mg in modern sediments from eight atolls of Nansha Islands [J]. Marine Science Bulletin, 1996, 15(3): 54-63.
[55] Tryon M D, Brown K M. Fluid and chemical cycling at Bush Hill: Implications for gas- and hydrate-rich environments [J]. Geochemistry, Geophysics, Geosystems, 2004, 5(12): Q12004.
[56] Wu N Y, Zhang H Q, Yang S X, et al. Gas hydrate system of Shenhu Area, Northern South China Sea: geochemical results [J]. Journal of Geological Research, 2011, 2011: 370298.
[57] Xie R, Wu D D, Liu J, et al. Geochemical evidence of metal-driven anaerobic oxidation of methane in the Shenhu Area, the South China Sea [J]. International Journal of Environmental Research and Public Health, 2019, 16(19): 3559. doi: 10.3390/ijerph16193559
[58] Sauer S, Crémière A, Knies J, et al. U-Th chronology and formation controls of methane-derived authigenic carbonates from the Hola trough seep area, northern Norway [J]. Chemical Geology, 2017, 470: 164-179. doi: 10.1016/j.chemgeo.2017.09.004
[59] Filippelli G M. Controls on phosphorus concentration and accumulation in oceanic sediments [J]. Marine Geology, 1997, 139(1-4): 231-240. doi: 10.1016/S0025-3227(96)00113-2
[60] Slomp C P, Mort H P, Jilbert T, et al. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane [J]. PLoS One, 2013, 8(4): e62386. doi: 10.1371/journal.pone.0062386
[61] März C, Riedinger N, Sena C, et al. Phosphorus dynamics around the sulphate-methane transition in continental margin sediments: Authigenic apatite and Fe(II) phosphates [J]. Marine Geology, 2018, 404: 84-96. doi: 10.1016/j.margeo.2018.07.010
[62] Rothe M, Kleeberg A, Grüneberg B, et al. Sedimentary sulphur: iron ratio indicates vivianite occurrence: a study from two contrasting freshwater systems [J]. PLoS One, 2015, 10(11): e0143737. doi: 10.1371/journal.pone.0143737
[63] Kubeneck L J, Lenstra W K, Malkin S Y, et al. Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments [J]. Marine Chemistry, 2021, 231: 103948. doi: 10.1016/j.marchem.2021.103948
[64] Lenstra W K, Egger M, Van Helmond N A G M, et al. Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial [J]. Biogeosciences, 2018, 15(22): 6979-6996. doi: 10.5194/bg-15-6979-2018
-