晚中新世C4植被扩张与大气二氧化碳分压的关系

汪镇, 田军. 晚中新世C4植被扩张与大气二氧化碳分压的关系[J]. 海洋地质与第四纪地质, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401
引用本文: 汪镇, 田军. 晚中新世C4植被扩张与大气二氧化碳分压的关系[J]. 海洋地质与第四纪地质, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401
WANG Zhen, TIAN Jun. The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401
Citation: WANG Zhen, TIAN Jun. The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 160-172. doi: 10.16562/j.cnki.0256-1492.2021032401

晚中新世C4植被扩张与大气二氧化碳分压的关系

  • 基金项目: 国家自然科学基金重点项目“探索晚新生代太平洋中深层经向翻转流与气候演变冰期旋回的关系”(42030403),“晚中新世大洋碳位移事件的成因机制及其古环境效应”(41776051)
详细信息
    作者简介: 汪镇(1997—),男,硕士研究生,海洋科学专业,E-mail:1931663@tongji.edu.cn
    通讯作者: 田军(1974—),男,教授,从事古海洋学与古环境变化研究,E-mail:tianjun@tongji.edu.cn
  • 中图分类号: P532

The Late Miocene C4 vegetation expansion and its relation with the partial pressure of carbon dioxide in atmospheric

More Information
  • 大量陆地与海洋的地质记录证实了晚中新世C4植被发生全球异步扩张,最早在10 Ma左右开始于非洲东部与西北部,随后8~6 Ma左右大范围传播至南亚、南非、北美等地区,最终C4植被于上新世发生再次扩张,基本形成现今的生态格局。对于晚中新世C4植被扩张的解释至今仍存在疑惑,主要围绕气候变化与CO2展开争论。最新的大气二氧化碳分压(pCO2)重建记录显示,大气CO2浓度在晚中新世时期处于下降的趋势。综合考虑晚中新世C4植被的扩张区域,地质记录重建的大气CO2浓度与数值模拟实验中形成C4植被扩张所需的大气CO2浓度在数值上相吻合,突出了大气CO2浓度变化对晚中新世C4植被扩张的作用。由于现有的大气CO2浓度重建记录的分辨率较低,不管是在趋势上还是数值上,其可靠性都有待商榷,未来应该专注于晚中新世可靠的高分辨率大气CO2浓度记录的重建,这是解开晚中新世大气CO2与C4植被扩张关系的关键,对研究未来气候变化具有指导意义。

  • 加载中
  • 图 1  实验模拟与地质记录揭示的晚中新世C4植被扩张范围

    Figure 1. 

    图 2  大气pCO2、C4植被扩张和晚中新世大洋碳位移事件

    Figure 2. 

    图 3  C3/C4植被参与的全球碳循环过程[60]

    Figure 3. 

    图 4  C4植物的CO2浓缩机制[27]

    Figure 4. 

    图 5  降雨量、季风强度、火灾强度、C3/C4植被比例的替代性指标

    Figure 5. 

    表 1  古大气pCO2的重建方法

    Table 1.  Methods for reconstruction of ancient atmospheric pCO2

    方法相关公式说明参考文献
    古植物叶片的气孔指数实验培养的银杏气孔指数SI与CO2浓度的经验关系Retallack, et al[36]
    古土壤碳酸盐的碳同位素Sz)是深度为z的土壤生物呼吸产生的CO2浓度,δ13Cs、δ13Cr、δ13Ca分别是土壤总CO2、土壤生物呼吸产生CO2、大气CO2的碳同位素组成Cerling, et al[37]
    浮游藻类生物标志物的碳同位素εp为总碳同位素分馏值,b为所有影响总碳同位素分馏的生理作用值,εf为碳固定过程的分馏系数Jasper, et al[40]
    浮游有孔虫壳体的硼同位素KB*αB是硼酸反应的电离常数与分馏系数,δ11BT是海水总硼的硼同位素组成,δ11BB(OH)4-是海水硼酸根的硼同位素组成;求[CO2]还需结合碳酸盐体系第二个参数Zeebe, et al[43]
    下载: 导出CSV
  • [1]

    Haq B U, Worsley T R, Burckle L H, et al. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events [J]. Geology, 1980, 8(9): 427-431. doi: 10.1130/0091-7613(1980)8<427:LMMCSA>2.0.CO;2

    [2]

    Bickert T, Haug G H, Tiedemann R. Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: implications for Caribbean paleoceanography, organic carbon burial, and the Messinian Salinity Crisis [J]. Paleoceanography, 2004, 19(1): PA1023.

    [3]

    Diester-Haass L, Billups K, Emeis K C. Late Miocene carbon isotope records and marine biological productivity: Was there a (dusty) link? [J]. Paleoceanography, 2006, 21(4): PA4216.

    [4]

    Hodell D A, Venz-Curtis K A. Late neogene history of deepwater ventilation in the Southern Ocean [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9): Q09001.

    [5]

    Drury A J, John C M, Shevenell A E. Evaluating climatic response to external radiative forcing during the late Miocene to early Pliocene: New perspectives from eastern equatorial Pacific (IODP U1338) and North Atlantic (ODP 982) locations [J]. Paleoceanography, 2016, 31(1): 167-184. doi: 10.1002/2015PA002881

    [6]

    Drury A J, Westerhold T, Frederichs T, et al. Late Miocene climate and time scale reconciliation: Accurate orbital calibration from a deep-sea perspective [J]. Earth and Planetary Science Letters, 2017, 475: 254-266. doi: 10.1016/j.jpgl.2017.07.038

    [7]

    Tian J, Ma X L, Zhou J H, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the latest Miocene: Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal δ18O and δ13C records [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382-391. doi: 10.1016/j.palaeo.2016.11.041

    [8]

    Tian J, Ma X L, Zhou J H, et al. Paleoceanography of the east equatorial Pacific over the past 16 Myr and Pacific–Atlantic comparison: High resolution benthic foraminiferal δ18O and δ13C records at IODP Site U1337 [J]. Earth and Planetary Science Letters, 2018, 499: 185-196. doi: 10.1016/j.jpgl.2018.07.025

    [9]

    Drury A J, Lee G P, Gray W R, et al. Deciphering the state of the late miocene to early pliocene equatorial pacific [J]. Paleoceanography and Paleoclimatology, 2018, 33(3): 246-263. doi: 10.1002/2017PA003245

    [10]

    Quade J, Cerling T E, Bowman J R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan [J]. Nature, 1989, 342(6246): 163-166. doi: 10.1038/342163a0

    [11]

    Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene [J]. Nature, 1993, 361(6410): 344-345. doi: 10.1038/361344a0

    [12]

    Cerling T E, Harris J M, Macfadden B J, et al. Global vegetation change through the Miocene/Pliocene boundary [J]. Nature, 1997, 389(6647): 153-158. doi: 10.1038/38229

    [13]

    Holbourn A E, Kuhnt W, Clemens S C, et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon [J]. Nature Communications, 2018, 9(1): 1584. doi: 10.1038/s41467-018-03950-1

    [14]

    Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter [J]. Chemical Geology, 1999, 161(1-3): 181-198. doi: 10.1016/S0009-2541(99)00086-8

    [15]

    Latorre C, Quade J, Mcintosh W C. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas [J]. Earth and Planetary Science Letters, 1997, 146(1-2): 83-96. doi: 10.1016/S0012-821X(96)00231-2

    [16]

    Behrensmeyer A K, Quade J, Cerling T E, et al. The structure and rate of late Miocene expansion of C4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan [J]. GSA Bulletin, 2007, 119(11-12): 1486-1505. doi: 10.1130/B26064.1

    [17]

    Passey B H, Ayliffe L K, Kaakinen A, et al. Strengthened East Asian summer monsoons during a period of high-latitude warmth? Isotopic evidence from Mio-Pliocene fossil mammals and soil carbonates from northern China [J]. Earth and Planetary Science Letters, 2009, 277(3-4): 443-452. doi: 10.1016/j.jpgl.2008.11.008

    [18]

    Uno K T, Cerling T E, Harris J M, et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16): 6509-6514. doi: 10.1073/pnas.1018435108

    [19]

    Fox D L, Honey J G, Martin R A, et al. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the southern Great Plains, southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands [J]. GSA Bulletin, 2012, 124(3-4): 444-462. doi: 10.1130/B30401.1

    [20]

    Dupont L M, Rommerskirchen F, Mollenhauer G, et al. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants [J]. Earth and Planetary Science Letters, 2013, 375: 408-417. doi: 10.1016/j.jpgl.2013.06.005

    [21]

    Hoetzel S, Dupont L, Schefuß E, et al. The role of fire in miocene to pliocene C4 grassland and ecosystem evolution [J]. Nature Geoscience, 2013, 6(12): 1027-1030. doi: 10.1038/ngeo1984

    [22]

    Polissar P J, Rose C, Uno K T, et al. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification [J]. Nature Geoscience, 2019, 12(8): 657-660. doi: 10.1038/s41561-019-0399-2

    [23]

    Neupane P C, Gani M R, Gani N D, et al. Neogene vegetation shift in the Nepalese Siwalik, Himalayas: A compound-specific isotopic study of lipid biomarkers [J]. The Depositional Record, 2020, 6(1): 192-202. doi: 10.1002/dep2.91

    [24]

    Feakins S J, Liddy H M, Tauxe L, et al. Miocene C4 grassland expansion as recorded by the indus fan [J]. Paleoceanography and Paleoclimatology, 2020, 35(6): e2020PA003856.

    [25]

    Retallack G J. Cenozoic expansion of grasslands and climatic cooling [J]. The Journal of Geology, 2001, 109(4): 407-426. doi: 10.1086/320791

    [26]

    Herbert T D, Lawrence K T, Tzanova A, et al. Late Miocene global cooling and the rise of modern ecosystems [J]. Nature Geoscience, 2016, 9(11): 843-847. doi: 10.1038/ngeo2813

    [27]

    Sage R F, Sage T L, Kocacinar F. Photorespiration and the evolution of C4 photosynthesis [J]. Annual Review of Plant Biology, 2012, 63: 19-47. doi: 10.1146/annurev-arplant-042811-105511

    [28]

    Osborne C P. Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands? [J]. Journal of Ecology, 2008, 96(1): 35-45.

    [29]

    Pagani M, Freeman K H, Arthur M A. Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses [J]. Science, 1999, 285(5429): 876-879. doi: 10.1126/science.285.5429.876

    [30]

    Feakins S J. Pollen-corrected leaf wax D/H reconstructions of northeast African hydrological changes during the late Miocene [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 62-71. doi: 10.1016/j.palaeo.2013.01.004

    [31]

    Mejía L M, Méndez-Vicente A, Abrevaya L, et al. A diatom record of CO2 decline since the late Miocene [J]. Earth and Planetary Science Letters, 2017, 479: 18-33. doi: 10.1016/j.jpgl.2017.08.034

    [32]

    Sosdian S M, Greenop R, Hain M P, et al. Constraining the evolution of Neogene ocean carbonate chemistry using the boron isotope pH proxy [J]. Earth and Planetary Science Letters, 2018, 498: 362-376. doi: 10.1016/j.jpgl.2018.06.017

    [33]

    Zhou H R, Helliker B R, Huber M, et al. C4 photosynthesis and climate through the lens of optimality [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 12057-12062. doi: 10.1073/pnas.1718988115

    [34]

    Kürschner W M, Van Der Burgh J, Visscher H, et al. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations [J]. Marine Micropaleontology, 1996, 27(1-4): 299-312. doi: 10.1016/0377-8398(95)00067-4

    [35]

    Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration [J]. Review of Palaeobotany and Palynology, 2001, 114(1-2): 1-28. doi: 10.1016/S0034-6667(00)00074-9

    [36]

    Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles [J]. Nature, 2001, 411(6835): 287-290. doi: 10.1038/35077041

    [37]

    Cerling T E. Carbon dioxide in the atmosphere; evidence from cenozoic and mesozoic paleosols [J]. American Journal of Science, 1991, 291(4): 377-400. doi: 10.2475/ajs.291.4.377

    [38]

    Ekart D D, Cerling T E, Montañez I P, et al. A 400 million year carbon isotope record of pedogenic carbonate; Implications for paleoatomospheric carbon dioxide [J]. American Journal of Science, 1999, 299(10): 805-827. doi: 10.2475/ajs.299.10.805

    [39]

    Da J W, Zhang Y G, Wang H T, et al. An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits [J]. Earth and Planetary Science Letters, 2015, 426: 69-75. doi: 10.1016/j.jpgl.2015.05.053

    [40]

    Jasper J P, Hayes J M. A carbon isotope record of CO2 levels during the late Quaternary [J]. Nature, 1990, 347(6292): 462-464. doi: 10.1038/347462a0

    [41]

    Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene [J]. Science, 2005, 309(5734): 600-603. doi: 10.1126/science.1110063

    [42]

    Zhang Y G, Pagani M, Liu Z H, et al. A 40-million-year history of atmospheric CO2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(2001): 20130096. doi: 10.1098/rsta.2013.0096

    [43]

    Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Amsterdam: Gulf Professional Publishing, 2001.

    [44]

    Foster G L, Lear C H, Rae J W B. The evolution of pCO2, ice volume and climate during the middle Miocene [J]. Earth and Planetary Science Letters, 2012, 341-344: 243-254. doi: 10.1016/j.jpgl.2012.06.007

    [45]

    Foster G L. Seawater pH, pCO2 and [CO2-3] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera [J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.jpgl.2008.04.015

    [46]

    Rau G H, Takahashi T, Des Marais D J, et al. The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model [J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1413-1419. doi: 10.1016/0016-7037(92)90073-R

    [47]

    Sun B N, Dilcher D L, Beerling D J, et al. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 7141-7146. doi: 10.1073/pnas.1232419100

    [48]

    Beerling D J, Royer D L. Fossil plants as indicators of the phanerozoic global carbon cycle [J]. Annual Review of Earth and Planetary Sciences, 2002, 30: 527-556. doi: 10.1146/annurev.earth.30.091201.141413

    [49]

    Pagani M. The alkenone-CO2 proxy and ancient atmospheric carbon dioxide [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 360(1793): 609-632. doi: 10.1098/rsta.2001.0959

    [50]

    Laws E A, Popp B N, Bidigare R R, et al. Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae [J]. Geochemistry, Geophysics, Geosystems, 2001, 2(1): 1006.

    [51]

    Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates [J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8

    [52]

    Beerling D J, Royer D L. Convergent cenozoic CO2 history [J]. Nature Geoscience, 2011, 4(7): 418-420. doi: 10.1038/ngeo1186

    [53]

    Greenop R, Foster G L, Wilson P A, et al. Middle Miocene climate instability associated with high-amplitude CO2 variability [J]. Paleoceanography, 2014, 29(9): 845-853. doi: 10.1002/2014PA002653

    [54]

    Seki O, Foster G L, Schmidt D N, et al. Alkenone and boron-based Pliocene pCO2 records [J]. Earth and Planetary Science Letters, 2010, 292(1-2): 201-211. doi: 10.1016/j.jpgl.2010.01.037

    [55]

    Bartoli G, Hönisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations [J]. Paleoceanography, 2011, 26(4): PA4213.

    [56]

    Foster G L, Royer D L, Lunt D J. Future climate forcing potentially without precedent in the last 420 million years [J]. Nature Communications, 2017, 8(1): 14845. doi: 10.1038/ncomms14845

    [57]

    Cui Y, Schubert B A, Jahren A H. A 23 m.y. record of low atmospheric CO2 [J]. Geology, 2020, 48(9): 888-892. doi: 10.1130/G47681.1

    [58]

    Raymo M E, Ruddiman W F. Tectonic forcing of late Cenozoic climate [J]. Nature, 1992, 359(6391): 117-122. doi: 10.1038/359117a0

    [59]

    Harrison T M, Copeland P, Hall S A, et al. Isotopic preservation of Himalayan/Tibetan uplift, denudation, and climatic histories of two molasse deposits [J]. The Journal of Geology, 1993, 101(2): 157-175. doi: 10.1086/648214

    [60]

    Ruddiman W F. Earth’s Climate: Past and Future[M]. New York: W.H. Freeman & Sons, 2001.

    [61]

    O’Leary M H. Carbon isotopes in photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants [J]. BioScience, 1988, 38(5): 328-336. doi: 10.2307/1310735

    [62]

    Sage R F. Environmental and evolutionary preconditionsfor the origin and diversification of the C4 photosyntheticSyndrome [J]. Plant Biology, 2001, 3(3): 202-213. doi: 10.1055/s-2001-15206

    [63]

    Edwards E J, Osborne C P, Strömberg C A E, et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science [J]. Science, 2010, 328(5978): 587-591. doi: 10.1126/science.1177216

    [64]

    Christin P A, Besnard G, Samaritani E, et al. Oligocene CO2 decline promoted C4 photosynthesis in grasses [J]. Current Biology, 2008, 18(1): 37-43. doi: 10.1016/j.cub.2007.11.058

    [65]

    Ehleringer J R, Sage R F, Flanagan L B, et al. Climate change and the evolution of C4 photosynthesis [J]. Trends in Ecology & Evolution, 1991, 6(3): 95-99.

    [66]

    Freeman K H, Colarusso L A. Molecular and isotopic records of C4 grassland expansion in the late miocene [J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1439-1454. doi: 10.1016/S0016-7037(00)00573-1

    [67]

    An Z S, Huang Y S, Liu W G, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation [J]. Geology, 2005, 33(9): 705-708. doi: 10.1130/G21423.1

    [68]

    Andrae J W, Mcinerney F A, Polissar P J, et al. Initial expansion of C4 vegetation in Australia during the late pliocene [J]. Geophysical Research Letters, 2018, 45(10): 4831-4840. doi: 10.1029/2018GL077833

    [69]

    Jia G D, Peng P, Zhao Q H, et al. Changes in terrestrial ecosystem since 30 Ma in East Asia: Stable isotope evidence from black carbon in the South China Sea [J]. Geology, 2003, 31(12): 1093-1096. doi: 10.1130/G19992.1

    [70]

    France-Lanord C, Derry L A. Organic carbon burial forcing of the carbon cycle from himalayan erosion [J]. Nature, 1997, 390(6655): 65-67. doi: 10.1038/36324

    [71]

    Dengler N G, Nelson T. Leaf structure and development in C4 plants[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 4: 133-172.

    [72]

    Kanai R, Edwards G E. The biochemistry of C4 photosynthesis[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 49: 87.

    [73]

    Hatch M D. C4 photosynthesis: a unique elend of modified biochemistry, anatomy and ultrastructure [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 1987, 895(2): 81-106.

    [74]

    Sage R F, Wedin D A, LI M. The biogeography of C4 photosynthesis: patterns and controlling factors[M]//Sage R F, Monson R K. C4 Plant Biology. Newbury Park, CA: Elsevier Inc., 1999, 10: 313-376.

    [75]

    Keeley J E, Rundel P W. Fire and the Miocene expansion of C4 grasslands [J]. Ecology Letters, 2005, 8(7): 683-690. doi: 10.1111/j.1461-0248.2005.00767.x

    [76]

    Karp A T, Behrensmeyer A K, Freeman K H. Grassland fire ecology has roots in the late Miocene [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(48): 12130-12135. doi: 10.1073/pnas.1809758115

    [77]

    Bond W J, Keeley J E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems [J]. Trends in Ecology & Evolution, 2005, 20(7): 387-394.

    [78]

    Bond W J, Woodward F I, Midgley G F. The global distribution of ecosystems in a world without fire [J]. New Phytologist, 2005, 165(2): 525-538. doi: 10.1111/j.1469-8137.2004.01252.x

    [79]

    Feakins S J, Levin N E, Liddy H M, et al. Northeast African vegetation change over 12 m. y. [J]. Geology, 2013, 41(3): 295-298. doi: 10.1130/G33845.1

    [80]

    Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4): 91-116. doi: 10.1016/0031-0182(94)00108-K

    [81]

    Dansgaard W. Stable isotopes in precipitation [J]. Tellus, 1964, 16(4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    [82]

    Tauxe L, Feakins S J. A reassessment of the chronostratigraphy of late miocene C3–C4 transitions [J]. Paleoceanography and Paleoclimatology, 2020, 35(7): e2020PA003857.

    [83]

    Ehleringer J R, Cerling T E, Helliker B R. C4 photosynthesis, atmospheric CO2 and climate [J]. Oecologia, 1997, 112(3): 285-299. doi: 10.1007/s004420050311

    [84]

    Lu J Y, Algeo T J, Zhuang G S, et al. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109454. doi: 10.1016/j.palaeo.2019.109454

  • 加载中

(5)

(1)

计量
  • 文章访问数:  2469
  • PDF下载数:  73
  • 施引文献:  0
出版历程
收稿日期:  2021-03-24
修回日期:  2021-07-12
刊出日期:  2021-10-28

目录