东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示

秦亚超, 蓝先洪, 陆凯, 胡刚, 栾锡武, 陈珊珊. 东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 151-159. doi: 10.16562/j.cnki.0256-1492.2021032402
引用本文: 秦亚超, 蓝先洪, 陆凯, 胡刚, 栾锡武, 陈珊珊. 东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示[J]. 海洋地质与第四纪地质, 2021, 41(5): 151-159. doi: 10.16562/j.cnki.0256-1492.2021032402
QIN Yachao, LAN Xianhong, LU Kai, HU Gang, LUAN Xiwu, CHEN Shanshan. The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 151-159. doi: 10.16562/j.cnki.0256-1492.2021032402
Citation: QIN Yachao, LAN Xianhong, LU Kai, HU Gang, LUAN Xiwu, CHEN Shanshan. The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current[J]. Marine Geology & Quaternary Geology, 2021, 41(5): 151-159. doi: 10.16562/j.cnki.0256-1492.2021032402

东海南部陆架水体2011年夏季温盐结构及其对台湾暖流和黑潮入侵的指示

  • 基金项目: 中国-东盟海上合作基金项目“中国-东盟海洋地震数据平台与研究中心建设”(12120100500017001);中国地质调查局项目“1:100万台北幅海洋区域地质调查”(GZH201300501,GZH201400206,DD20160139,DD20190236,DD20190377);国家自然科学基金项目“东海北部外陆架晚更新世以来两期古三角洲的时空展布特征及物源属性研究”(41706069)
详细信息
    作者简介: 秦亚超(1971—),男,博士,从事海洋地质调查与研究,E-mail:Lucifer2046@126.com
  • 中图分类号: P731.1

The summer thermohaline structure of 2011 of the southern East China Sea shelf and its implications for the intrusion of Taiwan Warm Current and Kuroshio Current

  • 利用2011年7月5个断面共30个站位的温盐深(CTD)测量资料,分析东海南部陆架水体的温盐结构和温跃层特征,探讨黑潮和台湾暖流对东海陆架水文状况的影响。结果显示,本区广泛存在着浅部温跃层和深部温跃层。浅部温跃层分布于20 m水深以内,跃层强度普遍较弱,具有明显的日内生消变化。深部温跃层分布于中、外陆架和台湾海峡。在中、外陆架的深水区,跃层底界深度约80 m,跃层厚度约10 m;跃层强度大,约为0.8 ℃/m,且较为稳定。在台湾海峡北部,温跃层分布于水深14~30 m,跃层厚度6~10 m,跃层强度偏弱,为0.2~0.5 ℃/m。在温跃层附近,由于上、下层水团温度、盐度的差异,其混合过程常出现盐指现象。在东海陆架90~110 m等深线之间,深部温跃层之下盘踞着一个深层冷水团,水温为16.8~17.6 ℃。黑潮水的入侵,使得外陆架温跃层强度减弱至0.2~0.5 ℃/m;同时,跃层层位上升,厚度加大。温跃层强度可以作为指示黑潮入侵的灵敏指标。当夏季深部温跃层强度低于0.6 ℃/m,同时伴随跃层厚度加大时,可判别为黑潮入侵。本区夏季黑潮锋可以到达110 m等深线附近。在中陆架50~80 m等深线之间,深部温跃层的消失,说明台湾暖流的强烈影响遍及整个水柱;而从南向北,台湾暖流的影响逐渐减弱。台湾海峡北部深层水温度较低,平均值为22.52 ℃,要比东海南部中陆架深层水低3 ℃,这可能意味着台湾暖流深层水主要源于黑潮分支的加入。

  • 加载中
  • 图 1  东海南部2011年夏季水文观测站位分布

    Figure 1. 

    图 2  东海南部2011年夏季水柱温度剖面

    Figure 2. 

    图 3  东海南部陆架水体2011年夏季深部温跃层特征

    Figure 3. 

    图 4  东海南部2011年夏季水柱盐度剖面

    Figure 4. 

    图 5  东海南部2011年夏季25 m水深温度平面分布

    Figure 5. 

    图 6  东海南部2011年夏季中陆架深层冷水团的分布、台湾暖流的影响范围和黑潮入侵

    Figure 6. 

  • [1]

    李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008: 86-87.

    LI Jiabiao. Regional Geology of the East China Sea[M]. Beijing: China Ocean Press, 2008: 86-87.

    [2]

    孙湘平. 中国近海区域海洋[M]. 北京: 海洋出版社, 2006: 106-129, 272-291.

    SUN Xiangping. Regional Oceanography of China Seas[M]. Beijing: China Ocean Press, 2006: 106-129, 272-291.

    [3]

    苏纪兰, 袁业立. 中国近海水文[M]. 北京: 海洋出版社, 2005: 214-221, 229-244.

    SU Jilan, YUAN Yeli. Offshore Hydrology in China[M]. Beijing: China Ocean Press, 2005: 214-221, 229-244.

    [4]

    Chern C S, Wang J, Wang D P. The exchange of kuroshio and East China Sea shelf water [J]. Journal of Geophysical Research: Oceans, 1990, 95(C9): 16017-16023. doi: 10.1029/JC095iC09p16017

    [5]

    Wang W T, Yu Z M, Song X X, et al. Intrusion pattern of the Offshore Kuroshio Branch Current and its effects on nutrient contributions in the East China Sea [J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2116-2128. doi: 10.1002/2017JC013538

    [6]

    Saito H. The kuroshio: its recognition, scientific activities and emerging issues[M]//Nagai T, Saito H, Suzuki K, et al. Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics. Washington, D C: Geophysical Monograph Series, 2019, doi: 10.1002/9781119428428.ch1.

    [7]

    Hsueh Y, Wang J, Chern C S. The intrusion of the Kuroshio across the continental shelf northeast of Taiwan [J]. Journal of Geophysical Research: Oceans, 1992, 97(C9): 14323-14330. doi: 10.1029/92JC01401

    [8]

    Hsin Y C, Wu C R, Shaw P T. Spatial and temporal variations of the Kuroshio east of Taiwan, 1982-2005: a numerical study [J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04002. doi: 10.1029/2007JC004485

    [9]

    Yang D Z, Yin B S, Liu Z L, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer [J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05015. doi: 10.1029/2010JC006777

    [10]

    Wang J, Oey L Y. Inter-annual and decadal fluctuations of the Kuroshio in East China Sea and connection with surface fluxes of momentum and heat [J]. Geophysical Research Letters, 2014, 41(23): 8538-8546. doi: 10.1002/2014GL062118

    [11]

    Yang D Z, Huang R X, Yin B S, et al. Topographic beta spiral and onshore intrusion of the Kuroshio Current [J]. Geophysical Research Letters, 2018, 45(1): 287-296. doi: 10.1002/2017GL076614

    [12]

    Wu C R, Hsin Y C, Chiang T L, et al. Seasonal and interannual changes of the Kuroshio intrusion onto the East China Sea Shelf [J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5039-5051. doi: 10.1002/2013JC009748

    [13]

    苏纪兰, 潘玉球. 台湾以北陆架环流动力学初步研究[J]. 海洋学报, 1989, 11(1):1-14

    SU Jilan, PAN Yuqiu. Preliminary study on the circulation dynamics over the continental shelf north of Taiwan [J]. Acta Oceanologica Sinica, 1989, 11(1): 1-14.

    [14]

    苏纪兰. 中国近海的环流动力机制研究[J]. 海洋学报, 2001, 23(4):1-16

    SU Jilan. A review of circulation dynamics of the coastal oceans near China [J]. Acta Oceanologica Sinica, 2001, 23(4): 1-16.

    [15]

    Cui X, Yang D Z, Sun C J, et al. New insight into the onshore intrusion of the Kuroshio into the East China Sea [J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016248. doi: 10.1029/2020JC016248

    [16]

    Chen C T A, Sheu D D. Does the Taiwan warm current originate in the Taiwan strait in wintertime? [J]. Journal of Geophysical Research: Oceans, 2006, 111(C4): C04005. doi: 10.1029/2005JC003281

    [17]

    Jan S, Sheu D D, Kuo H M. Water mass and throughflow transport variability in the Taiwan Strait [J]. Journal of Geophysical Research: Oceans, 2006, 111(C12): C12012. doi: 10.1029/2006JC003656

    [18]

    Lian E G, Yang S Y, Wu H, et al. Kuroshio subsurface water feeds the wintertime Taiwan Warm Current on the inner East China Sea shelf [J]. Journal of Geophysical Research: Oceans, 2016, 121(7): 4790-4803. doi: 10.1002/2016JC011869

    [19]

    国家技术监督局. GB12763.7-1991 海洋调查规范 海洋调查资料处理[S]. 北京: 中国标准出版社, 1992: 68-70.

    State Bureau of Technical Supervision. GB12763.7-1991 The Specification for Oceanographic Survey-Oceanographic Survey Data Processing[S]. Beijing: Standards Press of China, 1992: 68-70.

    [20]

    Sorkin A, Sorkin V, Leizerson I. Salt fingers in double-diffusive systems [J]. Physica A: Statistical Mechanics and its Applications, 2002, 303(1-2): 13-26. doi: 10.1016/S0378-4371(01)00396-X

    [21]

    Chen H W, Liu C T, Matsuno T, et al. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements [J]. Continental Shelf Research, 2016, 114: 41-53. doi: 10.1016/j.csr.2015.12.010

    [22]

    Katoh O, Morinaga K, Nakagawa N. Current distributions in the southern East China Sea in summer [J]. Journal of Geophysical Research: Oceans, 2000, 105(C4): 8565-8573. doi: 10.1029/1999JC900309

  • 加载中

(6)

计量
  • 文章访问数:  1366
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2021-03-24
修回日期:  2021-05-04
刊出日期:  2021-10-28

目录