印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义

齐文菁, 李小艳, 范德江, 张辉, 殷征欣, 刘升发. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2): 92-100. doi: 10.16562/j.cnki.0256-1492.2021050701
引用本文: 齐文菁, 李小艳, 范德江, 张辉, 殷征欣, 刘升发. 印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义[J]. 海洋地质与第四纪地质, 2022, 42(2): 92-100. doi: 10.16562/j.cnki.0256-1492.2021050701
QI Wenjing, LI Xiaoyan, FAN Dejiang, ZHANG Hui, YIN Zhengxin, LIU Shengfa. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 92-100. doi: 10.16562/j.cnki.0256-1492.2021050701
Citation: QI Wenjing, LI Xiaoyan, FAN Dejiang, ZHANG Hui, YIN Zhengxin, LIU Shengfa. Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 92-100. doi: 10.16562/j.cnki.0256-1492.2021050701

印度洋东经90°海岭现代沉积物稀土元素组成及其物源示踪意义

  • 基金项目: 全球变化与海气相互作用专项“东印度洋IND-CJ04区块海底底质和底栖生物调查”(GASI-02-IND-CJ04)
详细信息
    作者简介: 齐文菁(1997—),女,硕士研究生,主要从事海洋沉积学研究,E-mail:qiwenjing795@163.com
    通讯作者: 刘升发(1979—),男,研究员,研究方向为海洋沉积学,E-mail:liushengfa@fio.org.cn
  • 中图分类号: P736.4

Rare earth element composition of the surface sediments from the Ninetyeast Ridge and its implications for provenance

More Information
  • 基于印度洋东经90°海岭42个表层沉积物的粒度和稀土元素(REE)组成及其空间分布特征,判别了研究区现代沉积物的主要来源,并结合水动力格局等要素探讨了东经90°海岭北部区域沉积物输运方式。结果显示,研究区42个表层沉积物总稀土含量(∑REE)为26.37~156.8 μg/g,平均值为57.35 μg/g,特点是轻稀土含量(∑LREE)高,重稀土含量(∑HREE)低且均一、存在明显的Ce和Eu异常。REE组成和空间分布受沉积物来源控制显著,球粒陨石标准化后的Sm/Nd-δEu物源判别图以及判别函数(FD)结果显示,研究区北部表层沉积物的最主要来源是伊洛瓦底江陆源物质,次要来源是戈达瓦里-克里希纳河输入的印度半岛物质,而南部区域则受苏门答腊岛陆源物质影响显著。不同源区沉积物在研究区的输运过程主要受控于热带季风系统驱动下的季节性表层环流以及浊流和风。

  • 加载中
  • 图 1  研究区地理位置

    Figure 1. 

    图 2  东经90°海岭42个表层沉积物粒度组成

    Figure 2. 

    图 3  东经90°海岭42个表层沉积物REE分布

    Figure 3. 

    图 4  东经90°海岭表层沉积物及周边区域沉积物REE配分图

    Figure 4. 

    图 5  东经90°海岭42个表层沉积物REE与平均粒径及有关元素的相关性

    Figure 5. 

    图 6  90°海岭表层沉积物分区(a)及物源定性判别(b)

    Figure 6. 

    表 1  东经90°海岭及周边区域沉积物REE组成

    Table 1.  REE composition of sediments of the Ninetyeast Ridge and adjacent areas

    LaCePrNdSmEuGdTbDyHoErTmYbLu∑REE∑LREE∑HREEδEuδCe(La/Yb) N(Sm/Nd) N
    平均值12.0619.052.7911.022.290.572.300.372.180.421.180.181.140.1857.3547.777.940.770.757.030.64
    最小值6.545.881.425.891.230.321.350.221.330.270.770.120.740.1226.3721.304.910.710.465.740.62
    最大值29.6160.877.6530.126.521.616.290.995.711.042.860.442.690.41156.80136.3720.430.790.978.030.67
    标准差4.3910.341.124.320.920.220.840.130.750.130.360.060.350.0523.8021.192.670.010.150.620.01
    上陆壳31.0063.007.1027.004.701.004.000.703.900.832.300.302.000.31148.14133.8014.340.711.0210.450.54
    I37.1085.607.8532.456.501.605.250.955.201.052.950.452.350.37189.67192.6622.370.841.2110.640.62
    M46.3094.908.7035.606.701.405.700.894.200.882.700.452.300.34211.06193.6017.460.691.1413.570.58
    K-G44.6789.179.5339.478.031.806.341.116.191.223.540.503.000.47215.03171.1018.570.771.0410.040.63
    G-B29.7958.966.6824.644.720.954.450.963.960.792.270.352.260.32140.84125.7515.090.631.018.890.59
    S19.6038.114.3717.293.460.823.160.522.940.571.640.251.520.2494.4983.6610.840.750.998.710.62
      注:表中各元素含量、∑REE、∑LREE、∑HREE单位为µg/g;δEu、δCe、La/Yb和Sm/Nd均经过球粒陨石标准化;球粒陨石数据引自文献[23];上陆壳数据引自文献[24];伊洛瓦底江(I)数据引自文献[25];默哈纳迪河(M)和克里希纳-戈达瓦里河(K-G)数据引自文献[26];恒河-布拉马普特拉河(G-B)数据引自文献[27];苏门答腊岛(S)数据为“全球变化与海气相互作用”专项“东印度洋IND-CJ01区块调查区块海底底质和底栖生物调查(GASI-02-IND-CJ01)”项目获取的苏门答腊岛西南部近岸海域BS24钻孔样品数据。
    下载: 导出CSV

    表 2  东经90°海岭表层沉积物REE判别函数(FD)计算结果

    Table 2.  The REE discrimination values for 42 surface sediments of the Ninetyeast Ridge

    判别端元沉积物分区
    Ⅰ区Ⅱ区Ⅲ区
    伊洛瓦底江0.0050.0320.051
    克里希纳-戈达瓦里河0.0110.0370.057
    苏门答腊岛0.0820.0580.040
    下载: 导出CSV
  • [1]

    McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes [J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.

    [2]

    毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33(4):337-348 doi: 10.3969/j.issn.1672-6561.2011.04.002

    MAO Guangzhou, LIU Chiyang. Application of geochemistry in provenance and depositional setting analysis [J]. Journal of Earth Sciences and Environment, 2011, 33(4): 337-348. doi: 10.3969/j.issn.1672-6561.2011.04.002

    [3]

    Cullers R L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA [J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 4955-4972. doi: 10.1016/0016-7037(94)90224-0

    [4]

    Lim D, Jung H S, Choi J Y. REE partitioning in riverine sediments around the Yellow Sea and its importance in shelf sediment provenance [J]. Marine Geology, 2014, 357: 12-24. doi: 10.1016/j.margeo.2014.07.002

    [5]

    Um I K, Choi M S, Bahk J J, et al. Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea [J]. Marine Geology, 2013, 346: 208-219. doi: 10.1016/j.margeo.2013.09.007

    [6]

    Liu S F, Zhang H, Zhu A M, et al. Distribution of rare earth elements in surface sediments of the western Gulf of Thailand: Constraints from sedimentology and mineralogy [J]. Quaternary International, 2019, 527: 52-63. doi: 10.1016/j.quaint.2018.08.010

    [7]

    Mi B B, Liu S F, Shi X F, et al. A high resolution record of rare earth element compositional changes from the mud deposit on the inner shelf of the East China Sea: Implications for paleoenvironmental changes [J]. Quaternary International, 2017, 447: 35-45. doi: 10.1016/j.quaint.2016.09.056

    [8]

    Curray J R, Emmel F J, Moore D G. The Bengal Fan: morphology, geometry, stratigraphy, history and processes [J]. Marine and Petroleum Geology, 2002, 19(10): 1191-1223. doi: 10.1016/S0264-8172(03)00035-7

    [9]

    Curray J R. The Bengal depositional system: from rift to orogeny [J]. Marine Geology, 2014, 352: 59-69. doi: 10.1016/j.margeo.2014.02.001

    [10]

    方念乔, 丁旋, 刘勇勤, 等. 东经90°海岭的远洋沉积记录与晚新生代重大构造-环境事件[J]. 地学前缘, 2002, 9(1):103-111 doi: 10.3321/j.issn:1005-2321.2002.01.013

    FANG Nianqiao, DING Xuan, LIU Yongqin, et al. Pelagic sedimentary records of the Ninetyeast Ridge and the Late Cenozoic important tectono-environmental events [J]. Earth Science Frontiers, 2002, 9(1): 103-111. doi: 10.3321/j.issn:1005-2321.2002.01.013

    [11]

    方念乔, 陈学方, 丁旋, 等. 孟加拉湾和东经90°海岭260 ka以来的古海洋学记录与印度季风的影响[J]. 中国科学 (D辑), 2001, 44(1):351-359

    FANG Nianqiao, CHEN Xuefang, DING Xuan, et al. Paleoceanographical records under impact of the Indian monsoon from the Bengal Deep Sea Fan and Ninetyeast Ridge during the last 260 ka [J]. Science in China Series D: Earth Sciences, 2001, 44(1): 351-359.

    [12]

    张振芳, 方念乔, 吴琳, 等. 孟加拉湾东经90°海岭中上新世以来沉积记录及亚洲季风[J]. 地球科学—中国地质大学学报, 2004, 29(2):157-162

    ZHANG Zhenfang, FANG Nianqiao, WU Lin, et al. Sedimentary records and Asian monsoon in ninetyeast ridge of bay of Bengal since Pliocene time [J]. Earth Science—Journal of China University of Geosciences, 2004, 29(2): 157-162.

    [13]

    魏华玲, 方念乔, 丁旋, 等. 赤道东经90°海岭3.5Ma以来远洋记录反映的重大环境事件[J]. 地质通报, 2007, 26(12):1627-1632 doi: 10.3969/j.issn.1671-2552.2007.12.016

    WEI Hualing, FANG Nianqiao, DING Xuan, et al. Major environmental events reflected by pelagic records since 3.5 Ma BP in the Ninetyeast Ridge at the equator [J]. Geological Bulletin of China, 2007, 26(12): 1627-1632. doi: 10.3969/j.issn.1671-2552.2007.12.016

    [14]

    尚鲁宁, 胡刚, 袁忠鹏, 等. 东北印度洋85°E海脊的性质和起源: 综述和新认识[J]. 海洋地质与第四纪地质, 2020, 40(4):1-16

    SHANG Luning, HU Gang, YUAN Zhongpeng, et al. Tectonic structure and origin of the 85°E ridge, Northeastern Indian Ocean: A review and new observations [J]. Marine Geology & Quaternary Geology, 2020, 40(4): 1-16.

    [15]

    张振国, 方念乔, 李文宝, 等. 东经90°海岭远洋沉积物非碳酸盐组分的粒度特征及环境指示意义[J]. 太原理工大学学报, 2007, 38(1):85-87 doi: 10.3969/j.issn.1007-9432.2007.01.025

    ZHANG Zhenguo, FANG Nianqiao, LI Wenbao, et al. The characteristics of the non-CaCO3 grain size of pelagic sediment from the Ninetyeast Ridge and its indicated significance of environment [J]. Journal of Taiyuan University of Technology, 2007, 38(1): 85-87. doi: 10.3969/j.issn.1007-9432.2007.01.025

    [16]

    Kolla V, Moore D G, Curray J. Recent bottom-current activity in the deep western Bay of Bengal [J]. Marine Geology, 1976, 21(4): 255-270. doi: 10.1016/0025-3227(76)90010-4

    [17]

    李景瑞, 刘升发, 冯秀丽, 等. 孟加拉湾中部表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2016, 36(4):41-50

    LI Jingrui, LIU Shengfa, FENG Xiuli, et al. Rare earth element geochemistry of surface sediments in mid-Bengal Bay and implications for provenance [J]. Marine Geology & Quaternary Geology, 2016, 36(4): 41-50.

    [18]

    Klootwijk C T, Gee J S, Peirce J W, et al. Neogene evolution of the Himalayan-Tibetan region: Constraints from ODP site 758, northern Ninetyeast ridge; bearing on climatic change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 95(1-2): 95-110. doi: 10.1016/0031-0182(92)90167-4

    [19]

    乔彬, 刘子洲, 张书颖, 等. 季风转换期东印度洋的赤道流系结构和水文特征[J]. 海洋科学进展, 2014, 32(3):301-305 doi: 10.3969/j.issn.1671-6647.2014.03.001

    QIAO Bin, LIU Zizhou, ZHANG Shuying, et al. Equatorial current system structure and hydrologic characteristics in monsoonal wind transition period [J]. Advances in Marine Science, 2014, 32(3): 301-305. doi: 10.3969/j.issn.1671-6647.2014.03.001

    [20]

    宣莉莉. 热带东印度洋上层海洋环流及其与孟加拉湾水交换的季节变化研究[D]. 国家海洋局第三海洋研究所硕士学位论文, 2013.

    XUAN Lili. Seasonal variation of the upper ocean circulation in the eastern tropical Indian Ocean and its water exchange with the Bay of Benga[D]. Master Dissertation of Third Institute of Oceanography, State Oceanic Administration, 2013.

    [21]

    Song Z H, Wan S M, Colin C, et al. Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene [J]. Global and Planetary Change, 2021, 200: 103459. doi: 10.1016/j.gloplacha.2021.103459

    [22]

    McManus J. Grain size determination and interpretation[M]//Tucker M. Techniques in Sedimentology. Oxford, UK: Blackwell Scientific Publications, 1988: 63-85.

    [23]

    Evensen N M, Hamilton P J, O'Nions R K. Rare-earth abundances in chondritic meteorites [J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1199-1212. doi: 10.1016/0016-7037(78)90114-X

    [24]

    Taylor S R, McLennan S M. The geochemical evolution of the continental crust [J]. Reviews of Geophysics, 1995, 33(2): 241-265. doi: 10.1029/95RG00262

    [25]

    Garzanti E, Wang J G, Vezzoli G, et al. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar) [J]. Chemical Geology, 2016, 440: 73-90. doi: 10.1016/j.chemgeo.2016.06.010

    [26]

    Mazumdar A, Kocherla M, Carvalho M A, et al. Geochemical characterization of the Krishna-Godavari and Mahanadi offshore basin (Bay of Bengal) sediments: A comparative study of provenance [J]. Marine and Petroleum Geology, 2015, 60: 18-33. doi: 10.1016/j.marpetgeo.2014.09.005

    [27]

    Garzanti E, Andó S, France-Lanord C, et al. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga-Brahmaputra, Bangladesh) [J]. Earth and Planetary Science Letters, 2011, 302(1-2): 107-120. doi: 10.1016/j.jpgl.2010.11.043

    [28]

    孔祥淮, 刘健, 李巍然, 等. 山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别[J]. 海洋地质与第四纪地质, 2007, 27(3):51-59

    KONG Xianghuai, LIU Jian, LI Weiran, et al. Geochemistry of REE and provenance of surface sediments in the littoral area of the northeastern Shandong peninsula [J]. Marine Geology & Quaternary Geology, 2007, 27(3): 51-59.

    [29]

    杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2):164-167 doi: 10.3321/j.issn:1001-8166.1999.02.010

    YANG Shouye, LI Congxian. Research progress in REE tracer for sediment source [J]. Acta Electronica Sinica, 1999, 14(2): 164-167. doi: 10.3321/j.issn:1001-8166.1999.02.010

    [30]

    孙兴全, 刘升发, 李景瑞, 等. 孟加拉湾南部表层沉积物稀土元素组成及其物源指示意义[J]. 海洋地质与第四纪地质, 2020, 40(2):80-89

    SUN Xingquan, LIU Shengfa, LI Jingrui, et al. Rare earth element composition of the surface sediments from the south Bay of Bengal and its implications for provenance [J]. Marine Geology & Quaternary Geology, 2020, 40(2): 80-89.

    [31]

    Cullers R L, Barrett T, Carlson R, et al. Rare-earth element and mineralogic changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, U. S. A. [J]. Chemical Geology, 1987, 63(3-4): 275-297. doi: 10.1016/0009-2541(87)90167-7

    [32]

    曹鹏, 石学法, 李巍然, 等. 安达曼海东南部海域表层沉积物稀土元素特征及其物源指示意义[J]. 海洋地质与第四纪地质, 2015, 35(5):57-67

    CAO Peng, SHI Xuefa, LI Weiran, et al. Rare earth element geochemistry of surface sediments in southeastern Andaman Sea and implications for provenance [J]. Marine Geology & Quaternary Geology, 2015, 35(5): 57-67.

    [33]

    刘建国, 陈忠, 颜文, 等. 南海表层沉积物中细粒组分的稀土元素地球化学特征[J]. 地球科学—中国地质大学学报, 2010, 35(4):563-571 doi: 10.3799/dqkx.2010.072

    LIU Jianguo, CHEN Zhong, YAN Wen, et al. Geochemical characteristics of rare earth elements in the fine-grained fraction of surface sediment from South China Sea [J]. Earth Science—Journal of China University of Geosciences, 2010, 35(4): 563-571. doi: 10.3799/dqkx.2010.072

    [34]

    Holser W T. Evaluation of the application of rare-earth elements to paleoceanography [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 132(1-4): 309-323. doi: 10.1016/S0031-0182(97)00069-2

    [35]

    王爱萍, 杨守业, 李从先. 南京地区下蜀土元素地球化学特征及物源判别[J]. 同济大学学报, 2001, 29(6):657-661

    WANG Aiping, YANG Shouye, LI Congxian. Elemental geochemistry of the Nanjing Xiashu loess and the provenance study [J]. Journal of Tongji University, 2001, 29(6): 657-661.

    [36]

    Venkatarathnam K, Biscaye P E. Clay mineralogy and sedimentation in the eastern Indian Ocean [J]. Deep Sea Research and Oceanographic Abstracts, 1973, 20(8): 727-738. doi: 10.1016/0011-7471(73)90088-0

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2167
  • PDF下载数:  33
  • 施引文献:  0
出版历程
收稿日期:  2021-05-07
修回日期:  2021-06-18
刊出日期:  2022-04-28

目录