块体搬运沉积构型及其对后期浊流沉积的影响——以琼东南盆地陵水凹陷L区为例

高毅凡, 李磊, 程琳燕, 龚广传, 张威, 杨志鹏, 王潘, 杨蕾. 块体搬运沉积构型及其对后期浊流沉积的影响——以琼东南盆地陵水凹陷L区为例[J]. 海洋地质与第四纪地质, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501
引用本文: 高毅凡, 李磊, 程琳燕, 龚广传, 张威, 杨志鹏, 王潘, 杨蕾. 块体搬运沉积构型及其对后期浊流沉积的影响——以琼东南盆地陵水凹陷L区为例[J]. 海洋地质与第四纪地质, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501
GAO Yifan, LI Lei, CHENG Linyan, GONG Guangchuan, ZHANG Wei, YANG Zhipeng, WANG Pan, YANG Lei. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501
Citation: GAO Yifan, LI Lei, CHENG Linyan, GONG Guangchuan, ZHANG Wei, YANG Zhipeng, WANG Pan, YANG Lei. Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2022, 42(2): 101-109. doi: 10.16562/j.cnki.0256-1492.2021061501

块体搬运沉积构型及其对后期浊流沉积的影响——以琼东南盆地陵水凹陷L区为例

  • 基金项目: 国家自然科学基金项目“深水重力流流态转化研究”(41302147)
详细信息
    作者简介: 高毅凡(1998—),男,硕士,主要从事地震解释及深水沉积研究,E-mail:1035337789@qq.com
    通讯作者: 李磊(1979—),男,博士,教授,硕导,主要从事地震地质综合解释及海洋沉积研究,E-mail:lilei@xsyu.edu.cn
  • 中图分类号: P736

Sedimentary architecture of mass transport deposits and its influence on later turbidity deposition—An example from the L area of Lingshui Sag in Qiongdongnan Basin

More Information
  • 通过对琼东南盆地陵水凹陷陆坡区高分辨率三维地震资料的精细解释,在研究区发现广泛发育的块体搬运沉积体系(MTDs),表现为:① 弱振幅、低连续、杂乱或空白的地震反射特征且具有明显的侵蚀作用;② 在研究区体部和趾部区域发现大量侵蚀擦痕、逆冲推覆构造和挤压脊等内部结构;③ 块体搬运沉积由于内部结构变形发育为逆冲推覆构造等,其表面形态往往呈连续的凸起与凹陷。研究区识别出两期MTDs(MTDs1和MTDs2)和一套浊流沉积,MTDs1所形成的长10~15 km、宽2~3 km的脊,改变了海底形态,阻碍了后期浊流沉积的流向,并影响了浊流沉积的位置。

  • 加载中
  • 图 1  琼东南盆地陵水凹陷位置与研究区MTDs1现今地貌图

    Figure 1. 

    图 2  琼东南盆地陵水凹陷陆坡典型剖面

    Figure 2. 

    图 3  MTDs1均方根属性图(a)和瞬时频率图(b)

    Figure 3. 

    图 4  MTDs侵蚀擦痕典型剖面

    Figure 4. 

    图 5  MTDs逆冲构造典型剖面

    Figure 5. 

    图 6  MTDs挤压脊典型剖面

    Figure 6. 

    图 7  MTDs与后期浊流沉积的典型剖面

    Figure 7. 

    图 8  东北方向上后期浊流沉积的典型剖面

    Figure 8. 

    图 9  MTDs与后期浊流沉积属性图

    Figure 9. 

    图 10  MTDs1对后期浊流和MTDs2的控制作用

    Figure 10. 

  • [1]

    Arthur M R, Gani M R. Submarine channel and lobe hidden inside mass-transport deposits in the northern Gulf of Mexico [J]. Results in Geophysical Sciences, 2021, 5: 100013. doi: 10.1016/j.ringps.2021.100013

    [2]

    李磊, 王英民, 张莲美, 等. 块体搬运复合体的识别、演化及其油气勘探意义[J]. 沉积学报, 2010, 28(1):76-82

    LI Lei, WANG Yingmin, ZHANG Lianmei, et al. Identification and evolution of mass transport complexes and its significance for oil and gas exploration [J]. Acta Sedimentologica Sinica, 2010, 28(1): 76-82.

    [3]

    Nwoko J, Kane I, Huuse M. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand [J]. Marine and Petroleum Geology, 2020, 120: 104489. doi: 10.1016/j.marpetgeo.2020.104489

    [4]

    王大伟, 吴时国, 秦志亮, 等. 南海陆坡大型块体搬运体系的结构与识别特征[J]. 海洋地质与第四纪地质, 2009, 29(5):65-72

    WANG Dawei, WU Shiguo, QIN Zhiliang, et al. Architecture and identification of large quaternary mass transport depositions in the slope of South China Sea [J]. Marine Geology & Quaternary Geology, 2009, 29(5): 65-72.

    [5]

    Le Goff J, Slootman A, Mulder T, et al. On the architecture of intra-formational Mass-Transport Deposits: Insights from the carbonate slopes of Great Bahama Bank and the Apulian Carbonate Platform [J]. Marine Geology, 2020, 427: 106205. doi: 10.1016/j.margeo.2020.106205

    [6]

    Jablonská D, Di Celma C, Korneva I, et al. Mass-transport deposits within basinal carbonates from southern Italy [J]. Italian Journal of Geosciences, 2016, 135(1): 30-40. doi: 10.3301/IJG.2014.51

    [7]

    何玉林, 匡增桂, 徐梦婕. 北康盆地第四纪块体搬运沉积地震反射特征及成因机制[J]. 地质科技情报, 2018, 37(4):258-268

    HE Yulin, KUANG Zenggui, XU Mengjie. Seismic reflection characteristics and triggering mechanism of mass transport deposits of Quaternary in Beikang Basin [J]. Bulletin of Geological Science and Technology, 2018, 37(4): 258-268.

    [8]

    秦磊, 毛金昕, 倪凤玲, 等. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6):632-642

    QIN Lei, MAO Jinxin, NI Fengling, et al. A brief introduction to deep-water mass-transport complexes: structures, genetic classifications and identification methods [J]. Advances in Earth Science, 2020, 35(6): 632-642.

    [9]

    Kneller B, Dykstra M, Fairweather L, et al. Mass-transport and slope accommodation: implications for turbidite sandstone reservoirs [J]. AAPG Bulletin, 2016, 100(2): 213-235. doi: 10.1306/09011514210

    [10]

    苏明, 解习农, 王振峰, 等. 南海北部琼东南盆地中央峡谷体系沉积演化[J]. 石油学报, 2013, 34(3):467-478 doi: 10.7623/syxb201303007

    SU Ming, XIE Xinong, WANG Zhenfeng, et al. Sedimentary evolution of the central canyon system in Qiongdongnan Basin, northern South China Sea [J]. Acta Petrolei Sinica, 2013, 34(3): 467-478. doi: 10.7623/syxb201303007

    [11]

    李安琪, 叶绮, 王真真, 等. 琼东南盆地陵水凹陷北部梅山组砂质碎屑流沉积特征及油气地质意义[J]. 地质科技通报, 2021, 40(1):110-118

    LI Anqi, YE Qi, WANG Zhenzhen, et al. Sedimentary characteristics and significance in hydrocarbon exploration of sandy debris flow in Meishan Formation of the northern Lingshui Sag, Qiongdongnan Basin [J]. Bulletin of Geological Science and Technology, 2021, 40(1): 110-118.

    [12]

    罗进华, 朱培民. 琼东南盆地陆坡区重力流沉积体系超高精度解析[J]. 地质科技情报, 2019, 38(6):42-50

    LUO Jinhua, ZHU Peimin. Gravity induced deposits in the continental slope of Qiongdongnan Basin Based on ultrahigh resolution AUV data [J]. Bulletin of Geological Science and Technology, 2019, 38(6): 42-50.

    [13]

    李伟, 吴时国, 王秀娟, 等. 琼东南盆地中央峡谷上新统块体搬运沉积体系地震特征及其分布[J]. 海洋地质与第四纪地质, 2013, 33(2):9-15

    LI Wei, WU Guoshi, WANG Xiujuan, et al. Seismic characteristics and distribution of pliocene mass transport deposits in central canyon of Qiongdongnan Basin [J]. Marine Geology & Quaternary Geology, 2013, 33(2): 9-15.

    [14]

    杨田, 操应长, 田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报, 2021, 39(1):88-111

    YANG Tian, CAO Yingchang, TIAN Jingchun. Discussion on research of Deep-water gravity flow deposition in lacustrine basin [J]. Acta Sedimentologica Sinica, 2021, 39(1): 88-111.

    [15]

    秦雁群, 万仑坤, 计智锋, 等. 深水块体搬运沉积体系研究进展[J]. 石油与天然气地质, 2018, 39(1):140-152 doi: 10.11743/ogg20180114

    QIN Yanqun, WAN Lunkun, JI Zhifeng, et al. Progress of research on deep-water mass-transport deposits [J]. Oil & Gas Geology, 2018, 39(1): 140-152. doi: 10.11743/ogg20180114

    [16]

    李磊, 李彬, 王英民, 等. 块体搬运沉积体系地震地貌及沉积构型: 以珠江口盆地和尼日尔三角洲盆地为例[J]. 中南大学学报:自然科学版, 2013, 44(6):2410-2416

    LI Lei, LI Bin, WANG Yingmin, et al. Seismic geomorphology and sedimentary architectures of mass transport deposits: Cases from Pearl River Mouth Basin and Niger Delta Basin [J]. Journal of Central South University:Science and Technology, 2013, 44(6): 2410-2416.

    [17]

    孙国桐. 深水重力流沉积研究进展[J]. 地质科技情报, 2015, 34(3):30-36

    SUN Guotong. A review of deep-water gravity-flow deposition research [J]. Geological Science and Technology Information, 2015, 34(3): 30-36.

    [18]

    冯湘子, 朱友生. 南海北部陵水陆坡重力流沉积调查与分析[J]. 海洋地质与第四纪地质, 2020, 40(5):25-35

    FENG Xiangzi, ZHU Yousheng. Investigation of gravity flow deposits on the Lingshui slope of the northern South China Sea [J]. Marine Geology & Quaternary Geology, 2020, 40(5): 25-35.

    [19]

    李磊, 王英民, 徐强, 等. 南海北部白云凹陷21Ma深水重力流沉积体系[J]. 石油学报, 2012, 33(5):798-806 doi: 10.7623/syxb201205008

    LI Lei, WANG Yingmin, XU Qiang, et al. 21Ma deepwater gravity flow depositional system in Baiyun sag, northern South China Sea [J]. Acta Petrolei Sinica, 2012, 33(5): 798-806. doi: 10.7623/syxb201205008

    [20]

    Bull S, Cartwright J, Huuse M. A review of kinematic indicators from mass-transport complexes using 3D seismic data [J]. Marine and Petroleum Geology, 2009, 26(7): 1132-1151. doi: 10.1016/j.marpetgeo.2008.09.011

    [21]

    Nwoko J, Kane I, Huuse M. Megaclasts within mass-transport deposits: their origin, characteristics and effect on substrates and succeeding flows [J]. Geological Society, London, Special Publications, 2020, 500(1): 515-530. doi: 10.1144/SP500-2019-146

    [22]

    Bull S, Browne G H, Arnot M J, et al. Influence of Mass Transport Deposit (MTD) surface topography on deep-water deposition: an example from a predominantly fine-grained continental margin, New Zealand [J]. Geological Society, London, Special Publications, 2020, 500(1): 147-171. doi: 10.1144/SP500-2019-192

  • 加载中

(10)

计量
  • 文章访问数:  1887
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2021-06-15
修回日期:  2021-09-19
录用日期:  2021-09-19
刊出日期:  2022-04-28

目录