南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义

周郑鹏, 肖文申, 王汝建, 滕聿央. 南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义[J]. 海洋地质与第四纪地质, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002
引用本文: 周郑鹏, 肖文申, 王汝建, 滕聿央. 南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义[J]. 海洋地质与第四纪地质, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002
ZHOU Zhengpeng, XIAO Wenshen, WANG Rujian, TENG Yuyang. Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002
Citation: ZHOU Zhengpeng, XIAO Wenshen, WANG Rujian, TENG Yuyang. Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications[J]. Marine Geology & Quaternary Geology, 2022, 42(4): 12-23. doi: 10.16562/j.cnki.0256-1492.2021093002

南极罗斯海表层沉积物中生源组分的分布规律及其环境指示意义

  • 基金项目: 国家自然科学基金“第四纪冰期旋回中南大洋中深层水向中低纬太平洋的入侵及其气候效应”(42030401),“南极罗斯海扇区晚第四纪的古海洋与古气候演变历史及其对全球气候变化的响应”(41776191)
详细信息
    作者简介: 周郑鹏(1998—),男,硕士研究生,海洋地质学与古环境专业,E-mail:2031695@tongji.edu.cn
    通讯作者: 肖文申(1982—),男,博士,研究生导师,古海洋与古气候研究,E-mail:wxiao@tongji.edu.cn
  • 中图分类号: P736.2

Distribution patterns of biogenic components in surface sediments of the Ross Sea and their environmental implications

More Information
  • 罗斯海陆架是南极边缘海初级生产力最高的区域,是研究冰–海–气相互作用和碳循环的热点区域。 本文分析了中国第31–35次南极科考在罗斯海陆架区域采集的43个表层沉积物中的生源组分生物硅(Opal)、碳酸钙、总有机碳(TOC)、总氮(TN)含量和有机碳δ13C(δ13Corg)等指标,通过对这些指标聚类分析和因子分析,并与环境参数对比,研究了罗斯海生源要素的空间分布规律及其对环境的指示意义。结果显示,在罗斯海陆架区域内,TOC、TN、Opal是因子1的主要变量,代表水体生产力。其含量在西南陆架冰间湖和东南陆架地区显示高值,在阿代尔角外陆架地区显示低值,推测主要受溶解铁浓度的影响。δ13Corg是因子2的主要变量,其含量在特拉诺瓦湾冰间湖以及东北外陆架地区较高,在盆地海槽地区较低。δ13Corg的重值分布与生产力勃发有关,轻值分布与陆源有机碳的输入有关。碳酸钙是因子3的主要变量,含量在阿代尔角以及罗斯海冰间湖较高,在盆地海槽以及东部陆架地区较低,其含量主要受到保存效率的影响。

  • 加载中
  • 图 1  南极罗斯海陆架区概况[2]与2002—2011年南半球夏季海冰分布范围(https://earthdata.nasa.gov)

    Figure 1. 

    图 2  罗斯海表层海水营养盐浓度分布图

    Figure 2. 

    图 3  罗斯海表层沉积物生源分布图

    Figure 3. 

    图 4  罗斯海陆架3个公共因子得分分布(A-C)以及聚类分析各簇在罗斯陆架上平面分布情况(D)

    Figure 4. 

    表 1  ANT31-35航次表层样信息

    Table 1.  Information of the studied surface sediment samples retrieved from ANT 31-35 expeditions

    航次站位号位置水深/m取样方式序号
    ANT31JB0177°35′18″S, 165°34′10″E774箱式样1
    JB04(0~10 cm)75°18′04″S, 172°22′21″E510.8箱式样2
    JB05(0~5 cm)74°45′19″S, 173°11′17″E496.8箱式样3
    R0274°47′6″S, 165°7′59″E719.2箱式样4
    R05(0~5 cm)74°46′36″S, 167°46′39″E585.6箱式样5
    R0875°00′11″S, 165°00′43″E891.8箱式样6
    R0975°00′12″S, 165°59′53″E1032.1箱式样7
    R1074°59′68″S, 167°00′07″E636箱式样8
    R11(0~5 cm)74°56′57″S, 167°48′20″E449.4箱式样9
    R1474°56′06″S, 164°48′17″E901.1箱式样10
    R1775°13′49″S,167°54′33″E374.4箱式样11
    R1874°54′46.8″S, 163°45′50′E46箱式样12
    R1972°15′16″S, 170°23′40″E516.3箱式样13
    R1675°15′15″S, 166°59′50″E486.74多管样14
    R2075°30′16″S, 166°50′52″E425.59多管样15
    JB0674°28′22″S, 173°54′24″E567.52重力样16
    AB18B71°53′55″S, 128°8′42″W3463箱式样17
    ANT32RB02B75°25′24″S, 176°29′9″W574箱式样18
    RB03B75°44′48″S, 176°52′11″W610箱式样19
    RB05B76°24′19″S, 177°43′10″W606箱式样20
    RB06B76°42′48″S, 178°14′25″W619箱式样21
    RB07B77°02′59″S, 178°54′01″W628.3箱式样22
    RB08B77°18′32″S, 179°51′09″E669.7箱式样23
    RB11B77°16′10″S, 174°35′59″E494.9箱式样24
    RB16B74°30′49″S, 175°07′18″E478箱式样25
    RB15C77°12′7″S, 168°47′19″E939.8重力样26
    A1-0577°23′46″S, 162°40′41″W658.3箱式样27
    ANT33A1-0778°10′5″S, 163°2′20″W678.8箱式样28
    A1-0878°10′19″S, 165°47′17″W497.6箱式样29
    RS7878°41′38″S, 163°40′1″W331.06箱式样30
    A1-1077°58′5″S, 171°22′23″W514.9箱式样31
    A1-1577°7′37″S, 174°57′50″E399.9箱式样32
    A1-1876°25′16″S, 167°43′26″E742.8箱式样33
    I575°5′13″S, 165°2′53″E1174箱式样34
    A1-2077°39′58″S, 165°53′6″E590.1箱式样35
    A2-0274°12′22″S, 170°7′5″E654箱式样36
    A2-0373°42′4″S, 170°58′44″E588箱式样37
    A2-0572°36′18″S, 172°26′13″E546.2箱式样38
    A1-1177°49′34″S, 173°47′17″W530.4多管样39
    A1-1776°38′10″S, 169°23′46″E804.5多管样40
    A1-0978°5′2″S, 168°57′7″W586重力样41
    A1-1377°32′42″S, 178°1′16″W663.8重力样42
    ANT35R1-0374°59′43″, 168°21′28″E348.6箱式样43
     注:除标注外,其他站位的样品为0~2 cm表层沉积物;序号位置见图1。
    下载: 导出CSV
  • [1]

    Smith W O Jr, Ainley D G, Arrigo K R, et al. The oceanography and ecology of the Ross Sea [J]. Annual Review Marine Science, 2014, 6: 469-487. doi: 10.1146/annurev-marine-010213-135114

    [2]

    Morrison A K, Frölicher T L, Sarmiento J L. Upwelling in the Southern Ocean [J]. Physics Today, 2015, 68(1): 27-32. doi: 10.1063/PT.3.2654

    [3]

    Tremblay J E, Smith W O Jr. Primary production and nutrient dynamics in polynyas [J]. Elsevier Oceanography Series, 2007, 74: 239-269.

    [4]

    Parish T R, Cassano J J, Seefeldt M W. Characteristics of the ross ice shelf air stream as depicted in Antarctic mesoscale prediction system simulations [J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D12): D12109. doi: 10.1029/2005JD006185

    [5]

    Catalano G, Budillon G, La Ferla R, et al. The ross sea[M]//Liu K K, Atkinson L, Quinones R, et al. Carbon and nutrient Fluxes in Continental Margins: A Global Synthesis. New York: Springer-Verlag, 2010, 6: 303-318.

    [6]

    Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland [J]. Estuarine, Coastal and Shelf Science, 1994, 38(3): 219-233. doi: 10.1006/ecss.1994.1015

    [7]

    Emerson S, Hedges J I. Processes controlling the organic carbon content of open ocean sediments [J]. Paleoceanography, 1988, 3(5): 621-634. doi: 10.1029/PA003i005p00621

    [8]

    Stein R. Accumulation of organic carbon in marine sediments[M]. Berlin: Springer-Verlag, 1991: 217-320.

    [9]

    Hauck J, Gerdes D, Hillenbrand C D, et al. Distribution and mineralogy of carbonate sediments on Antarctic shelves [J]. Journal of Marine Systems, 2012, 90(1): 77-87. doi: 10.1016/j.jmarsys.2011.09.005

    [10]

    Rack W, Price D, Haas C, et al. Sea ice thickness in the western Ross Sea [J]. Geophysical Research Letters, 2021, 48(1): e2020GL090866. doi: 10.1029/2020GL090866

    [11]

    Arrigo K R, Worthen D L, Robinson D H. A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production [J]. Journal of Geophysical Research:Oceans, 2003, 108(C7): 3231. doi: 10.1029/2001JC000856

    [12]

    Nelson D M, DeMaster D J, Dunbar R B, et al. Cycling of organic carbon and biogenic silica in the Southern Ocean: Estimates of water-column and sedimentary fluxes on the Ross Sea continental shelf [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18519-18532. doi: 10.1029/96JC01573

    [13]

    Sweeney C, Hansell D A, Carlson C A, et al. Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2000, 47(15-16): 3369-3394.

    [14]

    Marsay C M, Barrett P M, McGillicuddy D J, et al. Distributions, sources, and transformations of dissolved and particulate iron on the Ross Sea continental shelf during summer [J]. Journal of Geophysical Research:Oceans, 2017, 122(8): 6371-6393. doi: 10.1002/2017JC013068

    [15]

    Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM [J]. Quaternary Science Reviews, 2014, 100: 31-54. doi: 10.1016/j.quascirev.2013.08.020

    [16]

    Orsi A H, Wiederwohl C L. A recount of Ross Sea waters [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2009, 56(13-14): 778-795. doi: 10.1016/j.dsr2.2008.10.033

    [17]

    Peloquin J A, Smith W O Jr. Phytoplankton blooms in the Ross Sea, Antarctica: Interannual variability in magnitude, temporal patterns, and composition [J]. Journal Geophysical Research:Oceans, 2007, 112(C8): C08013.

    [18]

    Sedwick P N, DiTullio G R, Mackey D J. Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters [J]. Journal of Geophysical Research:Oceans, 2000, 105(C5): 11321-11336. doi: 10.1029/2000JC000256

    [19]

    Arrigo K R, Van Dijken G L. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2004, 51(1-3): 117-138. doi: 10.1016/j.dsr2.2003.04.003

    [20]

    Smith W O, Nelson D M. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field [J]. Science, 1985, 227(4683): 163-166. doi: 10.1126/science.227.4683.163

    [21]

    Garcia H, Locarnini R A, Boyer T P, et al. Nutrients (phosphate, nitrate, silicate)[Z]. World Ocean Atlas 2005, 2010, 4.

    [22]

    Burckle L H. Distribution of opal in surface sediments, compiled from different sources[Z]. PANGAEA, 2001.

    [23]

    Andrews J T, Domack E W, Cunningham W L, et al. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica [J]. Quaternary Research, 1999, 52(2): 206-216. doi: 10.1006/qres.1999.2047

    [24]

    Ohkouchi N, Eglinton T I. Radiocarbon constraint on relict organic carbon contributions to Ross Sea sediments [J]. Geochemistry, Geophysics, Geosystems, 2006, 7(4): Q04012.

    [25]

    Villinski J C, Dunbar R B, Mucciarone D A. Carbon 13/Carbon 12 ratios of sedimentary organic matter from the Ross Sea, Antarctica: A record of phytoplankton bloom dynamics [J]. Journal of Geophysical Research:Oceans, 2000, 105(C6): 14163-14172. doi: 10.1029/1999JC000309

    [26]

    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments [J]. Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36(9): 1415-1426. doi: 10.1016/0198-0149(89)90092-7

    [27]

    Arthur D, Vassilvitskii S. K-Means++: the advantages of careful seeding[C]//Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007. New Orleans, Louisiana, USA: ACM, 2007: 1027-1035.

    [28]

    Reddon J R, Jackson D N. A note on testing the sphericity hypothesis with Bartlett’s test [J]. Multivariate Experimental Clinical Research, 1984, 7(1): 49-52.

    [29]

    Kaiser H F, Rice J. Little Jiffy, Mark Iv [J]. Educational and Psychological Measurement, 1974, 34(1): 111-117. doi: 10.1177/001316447403400115

    [30]

    滕聿央, 王汝建. 南极罗斯海表层沉积物中的放射虫组合分布及与其他硅质生物关系和环境生态意义[J]. 微体古生物学报, 2019, 36(4):377-398

    TENG Yuyang, WANG Rujian. Biogenic silica and radiolarian assemblages in the surface sediments of Ross Sea, Antarctica and their implications on marine environment and ecology [J]. Acta Micropalaeontologica Sinica, 2019, 36(4): 377-398.

    [31]

    黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5):97-108

    HUANG Mengxue, WANG Rujian, XIAO Wenshen, et al. Retreat process of ross ice shelf and hydrodynamic changes on northwestern ross continental shelf since the last glacial [J]. Marine Geology & Quaternary Geology, 2016, 36(5): 97-108.

    [32]

    Langone L, Frignani M, Labbrozzi L, et al. Present-day biosiliceous sedimentation in the northwestern Ross Sea, Antarctica [J]. Journal of Marine Systems, 1998, 17(1-4): 459-470. doi: 10.1016/S0924-7963(98)00058-X

    [33]

    Bentley M J, Cofaigh C Ó, Anderson J B, et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum [J]. Quaternary Science Reviews, 2014, 100: 1-9. doi: 10.1016/j.quascirev.2014.06.025

    [34]

    Leventer A, Dunbar R B. Factors influencing the distribution of diatoms and other algae in the Ross Sea [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18489-18500. doi: 10.1029/96JC00204

    [35]

    DeMaster D J, Ragueneau O, Nittrouer C A. Preservation efficiencies and accumulation rates for biogenic silica and organic C, N, and P in high-latitude sediments: The Ross Sea [J]. Journal of Geophysical Research:Oceans, 1996, 101(C8): 18501-18518. doi: 10.1029/96JC01634

    [36]

    Winton V H L, Dunbar G B, Bertler N A N, et al. The contribution of aeolian sand and dust to iron fertilization of phytoplankton blooms in southwestern Ross Sea, Antarctica [J]. Global Biogeochemical Cycles, 2014, 28(4): 423-436. doi: 10.1002/2013GB004574

    [37]

    Winton V H L, Dunbar G B, Atkins C B, et al. The origin of lithogenic sediment in the south-western Ross Sea and implications for iron fertilization [J]. Antarctic Science, 2016, 28(4): 250-260. doi: 10.1017/S095410201600002X

    [38]

    DeJong H B, Dunbar R B. Air-sea CO2 exchange in the Ross Sea, Antarctica [J]. Journal of Geophysical Research:Oceans, 2017, 122(10): 8167-8181. doi: 10.1002/2017JC012853

    [39]

    Tesi T, Belt S T, Gariboldi K, et al. Resolving sea ice dynamics in the north-western Ross Sea during the last 2.6 ka: From seasonal to millennial timescales [J]. Quaternary Science Reviews, 2020, 237: 106299. doi: 10.1016/j.quascirev.2020.106299

    [40]

    Rivaro P, Ardini F, Vivado D, et al. Potential sources of particulate iron in surface and deep waters of the terra Nova Bay (Ross Sea, Antarctica) [J]. Water, 2020, 12(12): 3517. doi: 10.3390/w12123517

    [41]

    Mack S L, Dinniman M S, McGillicuddy D J Jr, et al. Dissolved iron transport pathways in the Ross Sea: Influence of tides and horizontal resolution in a regional ocean model [J]. Journal of Marine Systems, 2017, 166: 73-86. doi: 10.1016/j.jmarsys.2016.10.008

    [42]

    Salmon E, Hofmann E E, Dinniman M S, et al. Evaluation of iron sources in the Ross Sea [J]. Journal of Marine Systems, 2020, 212: 103429. doi: 10.1016/j.jmarsys.2020.103429

    [43]

    De Baar H J W, Boyd P W, Coale K H, et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment [J]. Journal of Geophysical Research:Oceans, 2005, 110(9): C09S16.

    [44]

    Tsuda A, Takeda S, Saito H, et al. A mesoscale iron enrichment in the western subarctic pacific induces a large centric diatom bloom [J]. Science, 2003, 300(5621): 958-961. doi: 10.1126/science.1082000

    [45]

    任春燕, 陈敏, 高众勇, 等. 南极普里兹湾及其邻近海域悬浮颗粒有机物的碳同位素组成及其影响因素[J]. 海洋学报, 2015, 37(12):74-84

    REN Chunyan, CHEN Min, GAO Zhongyong, et al. Stable carbon isotopic composition of suspended particulate organic matter in the Prydz Bay and its adjacent areas [J]. Acta Oceanologica Sinica, 2015, 37(12): 74-84.

    [46]

    Lamb A L, Wilson G P, Leng M J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material [J]. Earth-Science Reviews, 2006, 75(1-4): 29-57. doi: 10.1016/j.earscirev.2005.10.003

    [47]

    Rivaro P, Ianni C, Raimondi L, et al. Analysis of physical and biogeochemical control mechanisms on summertime surface carbonate system variability in the western Ross Sea (Antarctica) using in situ and satellite data [J]. Remote Sensing, 2019, 11(3): 238. doi: 10.3390/rs11030238

    [48]

    Smith W O Jr, Comiso J C. Influence of sea ice on primary production in the Southern Ocean: A satellite perspective [J]. Journal of Geophysical Research, 2008, 113(C5): C05S93.

    [49]

    Hunt B P V, Pakhomov E A, Hosie G W, et al. Pteropods in Southern ocean ecosystems [J]. Progress in Oceanography, 2008, 78(3): 193-221. doi: 10.1016/j.pocean.2008.06.001

    [50]

    韩喜彬, 赵军, 初凤友, 等. 南极半岛东北海域表层沉积有机质来源及其沉积环境[J]. 海洋学报, 2015, 37(8):26-38

    HAN Xibin, ZHAO Jun, CHU Fengyou, et al. The source of organic matter and its sedimentary environment of the bottom surface sediment in northeast waters to Antarctic Peninsula based on the biomarker features [J]. Acta Oceanologica Sinica, 2015, 37(8): 26-38.

    [51]

    Rivaro P, Messa R, Ianni C, et al. Distribution of total alkalinity and pH in the Ross Sea (Antarctica) waters during austral summer 2008 [J]. Polar Research, 2014, 33(1): 20403. doi: 10.3402/polar.v33.20403

    [52]

    Bergamasco A, Defendi V, Budillon G, et al. Downslope flow observations near Cape Adare shelf-break [J]. Antarctic Science, 2004, 16(2): 199-204. doi: 10.1017/S0954102004001981

    [53]

    Melis R, Salvi G. Foraminifer and ostracod occurrence in a cool-water carbonate factory of the cape Adare (Ross Sea, Antarctica): a key lecture for the climatic and oceanographic variations in the Last 30, 000 years [J]. Geosciences, 2020, 10(10): 413. doi: 10.3390/geosciences10100413

    [54]

    Kim S, Lee J I, McKay R M, et al. Late Pleistocene paleoceanographic changes in the Ross Sea-Glacial-interglacial variations in paleoproductivity, nutrient utilization, and deep-water formation [J]. Quaternary Science Reviews, 2020, 239: 106356. doi: 10.1016/j.quascirev.2020.106356

  • 加载中

(4)

(1)

计量
  • 文章访问数:  2222
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2021-09-30
修回日期:  2021-12-24
录用日期:  2021-12-24
刊出日期:  2022-08-28

目录